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Editorial

by Edward Z. Yang 〈ezyang@cs.stanford.edu〉

This issue, we bring to you two articles which tie Haskell together with other
domains outside of the ordinary Haskell experience. One combines Haskell with
machine learning; the other combines Haskell with computational quantum chem-
istry. These articles don’t use the most sophisticated type-level programming or
Kan extensions; however, I do think they offer a glimpse at the ways practition-
ers in other fields use Haskell. I think it’s quite interesting to see what kinds of
problems they care about and what features of Haskell they lean on to get things
done. I hope you agree!





A Functional Approach to Neural
Networks

by Amy de Buitléir 〈amy.butler@ericsson.com〉
and Michael Russell 〈mrussell@ait.ie〉
and Mark Daly 〈mdaly@ait.ie〉

Neural networks can be useful for pattern recognition and machine learning. We de-
scribe an approach to implementing a neural network in a functional programming
language, using a basic back-propagation algorithm for illustration. We highlight
the benefits of a purely functional approach for both the development and testing
of neural networks. Although the examples are coded in Haskell, the techniques
described should be applicable to any functional programming language.

Back-propagation

Back-propagation is a common method of training neural networks. After an
input pattern is propagated forward through the network to produce an output
pattern, the output pattern is compared to the target (desired) pattern, and the
error is then propagated backward. During the back-propagation phase, each
neuron’s contribution to the error is calculated, and the network configuration
can be modified with the goal of reducing future errors. Back-propagation is a
supervised training method, so the correct answers for the training set must be
known in advance or be calculable. In this paper, we use a simple “no-frills” back-
propagation algorithm; this is sufficient for demonstrating a functional approach
to neural networks.
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Neural networks

An artificial neuron

The basic building block of an artificial neural network is the neuron, shown in
Figure 1. It is characterized by the elements listed below [1].

I a set of inputs xi, usually more than one;
I a set of weights wi associated with each input;
I the weighted sum of the inputs a = Σxiwi;
I an activation function f(a) which acts on the weighted sum of the inputs,

and determines the output;
I a single output y = f(a).

Σ a yxi x wi f(a)

in
p
u
ts

output
i

Figure 1: An artificial neuron.

A simple network

The most common type of artificial neural network is a feed-forward network. In
a feed-forward network, the neurons are grouped into layers, as shown in Figure
2. Each neuron feeds its output forward to every neuron in the following layer.
There is no feedback from a later layer to an earlier one and no connections within
a layer, e.g. there are no loops. The elements of the input pattern to be analyzed
are presented to a sensor layer, which has one neuron for every component of the
input. The sensor layer performs no processing; it merely distributes its input
to the next layer. After the sensor layer comes one or more hidden layers ; the
number of neurons in these layers is arbitrary. The last layer is the output layer ;
the outputs from these neurons form the elements of the output pattern. Hence,
the number of neurons in the output layer must match the desired length of the
output pattern.
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Figure 2: A simple neural network.

Training the network

The error of a neural network is a function of the difference between the output
pattern and the target pattern (desired output). The network can be trained by ad-
justing the network weights with the goal of reducing the error. Back-propagation
is one technique for choosing the new weights. [2] This is a supervised learning
process: the network is presented with both the input pattern as well as the target
pattern. The error from the output layer is propagated backward through the hid-
den layers in order to determine each layer’s contribution to the error, a process is
illustrated in Figure 3. The weights in each layer are then adjusted to reduce the
error for that input pattern.

layeri-1

adjust
weights

layeri

adjust
weights

layeri+1

adjust
weights

back-propagate

propagateinputs outputs

errors

Figure 3: Back-propagation.
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Building a neural network

Building a neuron

In this implementation, we use matrices to represent the weights for the neu-
rons in each layer. The matrix calculations are performed using Alberto Ruiz’s
hmatrix [3, 4], a purely functional Haskell interface to basic matrix computations
and other numerical algorithms in GSL [5], BLAS [6, 7] and LAPACK [8, 9]. With
a matrix-based approach, there is no need for a structure to represent a single neu-
ron. Instead, the implementation of the neuron is distributed among the following
entities

I the inputs from the previous layer
I the output to the next layer
I a column in the weight matrix
I an activation function (in this implementation, the same function is used for

all neurons in all layers except the sensor layer)
For the weight matrix, we use the Matrix type provided by hmatrix. The

inputs, outputs and patterns are all column vectors. We use the Matrix type for
these as well, but we introduce the type synonym ColumnVector. In Haskell, the
type keyword defines an alternative name for an existing type; it does not define
a new type. (A complete code listing, along with a sample character recognition
application, is available online [10].)

type ColumnVector a = Matrix a

The activation function is the final element needed to represent the neuron.
Here, we encounter one of the advantages of a functional approach. Like most
most functional programming languages, Haskell supports first-class functions; a
function can be used in the same way as any other type of value. It can be passed as
an argument to another function, stored in a data structure, or returned as result
of function evaluation. Hence, we don’t need to do anything special to allow this
neural network to use any activation function chosen by the user. The activation
function can be supplied as an argument at the time the network is created.

It is convenient to create a structure to hold both the activation function and its
first derivative. (The back-propagation algorithm requires that the activation func-
tion be differentiable, and we will need the derivative to apply the back-propagation
method.) This helps to reduce the chance that the user will change the activation
function and forget to change the derivative. We define this type using Haskell’s
record syntax, and include a string to describe the activation function being used.

data ActivationSpec = ActivationSpec

{
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asF :: Double -> Double,

asF’ :: Double -> Double,

desc :: String

}

The first field, asF, is the activation function, which takes a Double (double
precision, real floating-point value) as input and returns a Double. The second
field, asF’, is the first derivative. It also takes a Double and returns a Double.
The last field, desc, is a String value containing a description of the function.

Accessing the fields of a value of type ActivationSpec is straightforward. For
example, if the name of the record is s, then its activation function is asF s, its
first derivative is asF’ s, and its description is desc s.

As an example of how to create a value of the type ActivationSpec, here is one
for the identity function f(x) = x, whose first derivative is f ′(x) = 1.

identityAS = ActivationSpec

{

asF = id,

asF’ = const 1,

desc = "identity"

}

The function id is Haskell’s predefined identity function. The definition of
asF’ may seem puzzling. The first derivative of the identity function is 1, but
we cannot simply write asF’ = 1. Why not? Recall that the type signature of
asF’ is Double -> Double, so we need to assign an expression to it that takes a
Double and returns a Double. However, 1 is just a single number. It could be
of type Double, but not Double -> Double. To solve this issue, we make use of
the predefined const function, which takes two parameters and returns the first,
ignoring the second. By partially applying it (supplying 1 as the first parameter),
we get a function that takes a single parameter and always returns the value 1. So
the expression const 1 can satisfy the type signature Double -> Double.

The hyperbolic tangent is a commonly-used activation function; the appropriate
ActivationSpec is defined below.

tanhAS :: ActivationSpec

tanhAS = ActivationSpec

{

asF = tanh,

asF’ = tanh’,

desc = "tanh"

9
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}

tanh’ x = 1 - (tanh x)^2

At this point, we have taken advantage of Haskell’s support for first-class func-
tions to store functions in a record structure and to pass functions as parameters
to another function (in this case, the ActivationSpec constructor).

Building a neuron layer

To define a layer in the neural network, we use a record structure containing the
weights and the activation specification. The weights are stored in an n×m matrix,
where n is the number of inputs and m is the number of neurons. The number of
outputs from the layer is equal to the number of neurons, m.

data Layer = Layer

{

lW :: Matrix Double,

lAS :: ActivationSpec

}

The weight matrix, lW, has type Matrix Double. This is a matrix whose element
values are double-precision floats. This type and the associated operations are
provided by the hmatrix package. The activation specification, lAS uses the type
ActivationSpec, defined earlier. Again we use the support for first-class functions;
to create a value of type Layer, we pass a record containing function values into
another function, the Layer constructor.

Assembling the network

The network consists of a list of layers and a parameter to control the rate at which
the network learns new patterns.

data BackpropNet = BackpropNet

{

layers :: [Layer],

learningRate :: Double

}

The notation [Layer] indicates a list whose elements are of type Layer. Of
course, the number of outputs from one layer must match the number of inputs
to the next layer. We ensure this by requiring the user to call a special function
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(a “smart constructor”) to construct the network. First, we address the problem
of how to verify that the dimensions of a consecutive pair of network layers is
compatible. The following function will report an error if a mismatch is detected.

checkDimensions :: Matrix Double -> Matrix Double -> Matrix Double

checkDimensions w1 w2 =

if rows w1 == cols w2

then w2

else error "Inconsistent dimensions in weight matrix"

Assuming that no errors are found, checkDimensions simply returns the second
layer in a pair. The reason for returning the second layer will become clear when
we see how checkDimensions is used.

The constructor function should invoke checkDimensions on each pair of lay-
ers. In an imperative language, a for loop would typically be used. In functional
languages, a recursive function could be used to achieve the same effect. However,
there is a more straightforward solution using an operation called a scan. There
are several variations on this operation, and it can proceed either from left to
right, or from right to left. We’ve chosen the predefined operation scanl1, read
“scan-ell-one” (not “scan-eleven”).

scanl1 f [x1, x2, x3, ...] == [x1, f x1 x2, f (f x1 x2) x3, ...]

The l indicates that the scan starts from the left, and the 1 indicates that we
want the variant that takes no starting value. Applying scanl1 checkDimensions

to a list of weight matrices gives the following result (again assuming no errors are
found).

scanl1 checkDimensions [w1, w2, w3, ...]

== [w1, checkDimensions w1 w2,

checkDimensions (checkDimensions w1 w2) w3, ...]

If no errors are found, then checkDimensions returns the second layer of each
pair, so:

scanl1 checkDimensions [w1, w2, w3, ...]

== [w1, checkDimensions w1 w2, checkDimensions w2 w3, ...]

== [w1, w2, w3, ...]

Therefore, if the dimensions of the weight matrices are consistent, this operation
simply returns the list of matrices, e.g. it is the identity function.

The next task is to create a layer for each weight matrix supplied by the user.
The expression map buildLayer checkedWeights will return a new list, where
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each element is the result of applying the function buildLayer to the corresponding
element in the list of weight matrices. The definition of buildLayer is simple, it
merely invokes the constructor for the type Layer, defined earlier.

buildLayer w = Layer { lW=w, lAS=s }

Using the operations discussed above, we can now define the constructor func-
tion, buildBackpropNet.

buildBackpropNet ::

Double -> [Matrix Double] -> ActivationSpec -> BackpropNet

buildBackpropNet lr ws s = BackpropNet { layers=ls, learningRate=lr }

where checkedWeights = scanl1 checkDimensions ws

ls = map buildLayer checkedWeights

buildLayer w = Layer { lW=w, lAS=s }

The primary advantage of using functions such as map and scanl1 is not that
they save a few lines of code over an equivalent for loop, but that these functions
more clearly indicate the programmer’s intent. For example, a quick glance at
the word map tells the reader that the same operation will be performed on every
element in the list, and that the result will be a list of values. It would be necessary
to examine the equivalent for loop more closely to determine the same information.

Running the Network

A closer look at the network structure

The neural network consists of multiple layers of neurons, numbered from 0 to L,
as illustrated in Figure 4. Each layer is fully connected to the next layer. Layer 0 is
the sensor layer. (It performs no processing; each neuron receives one component
of the input vector x and distributes it, unchanged, to the neurons in the next
layer.) Layer L is the output layer. The layers l = 1..(L− 1) are hidden layers. zlk
is the output from neuron l in layer l.

12
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Figure 4: Propagation through the network.

We use the following notation:
I xi is the ith component of the input pattern;
I zli is the output of the ith neuron in layer l;
I yi is the ith component of the output pattern.

Propagating through one layer

The activation function for neuron k in layer l is

a0k = xk

alk =

Nl−1∑
j=1

wlkjzl−1,j l > 0

where
I Nl−1 is the number of neurons in layer l − 1.
I wlkj is the weight applied by the neuron k in layer l to the input received

from neuron j in layer l − 1. (Recall that the sensor layer, layer 0, simply
passes along its inputs without change.)

We can express the activation for layer l using a matrix equation.

13
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al =


x l = 0

Wlx l > 0

The output from the neuron is

zlk = f(alk)

where f(a) is the activation function. For convenience, we define the function
mapMatrix which applies a function to each element of a matrix (or column vector).
This is analogous to Haskell’s map function. (The definition of this function is in the
appendix.) Then we can calculate the layer’s output using the Haskell expression
mapMatrix f a, where f is the activation function.

If we’ve only propagated the input through the network, all we need is the
output from the final layer, zL. However, we will keep the intermediate calculations
because they will be required during the back-propagation pass. We will keep all
of the necessary information in the following record structure. Note that anything
between the symbol -- and the end of a line is a comment and is ignored by the
compiler.

data PropagatedLayer

= PropagatedLayer

{

-- The input to this layer

pIn :: ColumnVector Double,

-- The output from this layer

pOut :: ColumnVector Double,

-- The value of the first derivative of the activation function

-- for this layer

pF’a :: ColumnVector Double,

-- The weights for this layer

pW :: Matrix Double,

-- The activation specification for this layer

pAS :: ActivationSpec

}

| PropagatedSensorLayer

{

-- The output from this layer

pOut :: ColumnVector Double

}

14
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This structure has two variants. For the sensor layer (PropagatedSensorLayer),
the only information we need is the output, which is identical to the input. For all
other layers (PropagatedLayer), we need the full set of values. Now we are ready
to define a function to propagate through a single layer.

propagate :: PropagatedLayer -> Layer -> PropagatedLayer

propagate layerJ layerK = PropagatedLayer

{

pIn = x,

pOut = y,

pF’a = f’a,

pW = w,

pAS = lAS layerK

}

where x = pOut layerJ

w = lW layerK

a = w <> x

f = asF ( lAS layerK )

y = P.mapMatrix f a

f’ = asF’ ( lAS layerK )

f’a = P.mapMatrix f’ a

The operator <> performs matrix multiplication; it is defined in the hmatrix

package.

Propagating through the network

To propagate weight adjustments through the entire network, we create a sen-
sor layer to provide the inputs and use another scan operation, this time with
propagate. The scanl function is similar to the scanl1 function, except that it
takes a starting value.

scanl f z [x1, x2, ...] == [z, f z x1, f (f z x1) x2), ...]

In this case, the starting value is the sensor layer.

propagateNet :: ColumnVector Double -> BackpropNet -> [PropagatedLayer]

propagateNet input net = tail calcs

where calcs = scanl propagate layer0 (layers net)

layer0 = PropagatedSensorLayer{ pOut=validatedInputs }

validatedInputs = validateInput net input

The function validateInput verifies that the input vector has the correct length
and that the elements are within the range [0,1]. Its definition is straightforward.

15
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Training the network

The back-propagation algorithm

We use the matrix equations for basic back-propagation as formulated by Hristev
[11, Chapter 2]. (We will not discuss the equations in detail, only summarize them
and show one way to implement them in Haskell.) The back-propagation algorithm
requires that we operate on each layer in turn (first forward, then backward) using
the results of the operation on one layer as input to the operation on the next
layer. The input vector x is propagated forward through the network, resulting in
the output vector zL, which is then compared to the target vector t (the desired
output). The resulting error, zL − t is then propagated backward to determine
the corrections to the weight matrices:

Wnew = Wold − µ∇E (1)

where µ is the learning rate, and E is the error function. For E, we can use the
sum-of-squares error function, defined below.

E(W ) ≡ 1

2

NL∑
q=1

[zLq(x)− tq(x)]2

where zLq is the output from neuron q in the output layer (layer L). The error
gradient for the last layer is given by:

∇zLE = zL(x)− t (2)

The error gradient for a hidden layer can be calculated recursively according to
the equations below. (See [11, Chapter 2] for the derivation.)

(∇E)l = [∇zlE � f ′(al)] · zTl−1 for layers l = 1, L

∇zlE = W t
l+1 · [∇zl+1

E � f ′(al+1)] calculated recursively from L-1 to 1 (3)

The symbol � is the Hadamard, or element-wise product.

Back-propagating through a single layer

The result of back-propagation through a single layer is stored in the structure
below. The expression ∇zlE is not easily represented in ASCII text, so the name
“dazzle” is used in the code.
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data BackpropagatedLayer = BackpropagatedLayer

{

-- Del-sub-z-sub-l of E

bpDazzle :: ColumnVector Double,

-- The error due to this layer

bpErrGrad :: ColumnVector Double,

-- The value of the first derivative of the activation

-- function for this layer

bpF’a :: ColumnVector Double,

-- The input to this layer

bpIn :: ColumnVector Double,

-- The output from this layer

bpOut :: ColumnVector Double,

-- The weights for this layer

bpW :: Matrix Double,

-- The activation specification for this layer

bpAS :: ActivationSpec

}

The next step is to define the backpropagate function. For hidden layers, we
use Equation (3), repeated below.

∇zlE = W t
l+1 · [∇zl+1

E � f ′(al+1)] calculated recursively from L-1 to 1 (3)

Since subscripts are not easily represented in ASCII text, we use J in variable
names in place of l, and K in place of l+1. So dazzleJ is ∇zlE, wKT is W t

l+1,
dazzleJ is ∇zl+1

E, and f’aK is f ′(al+1). Thus, Equation (3) is coded as

dazzleJ = wKT <> (dazzleK * f’aK)

The operator * appears between two column vectors, dazzleK and f’aK, so it
calculates the Hadamard (element-wise) product rather than a scalar product. The
backpropagate function uses this expression, and also copies some fields from the
original layer (prior to back-propagation).

backpropagate ::

PropagatedLayer -> BackpropagatedLayer -> BackpropagatedLayer

backpropagate layerJ layerK = BackpropagatedLayer

{

bpDazzle = dazzleJ,

bpErrGrad = errorGrad dazzleJ f’aJ (pIn layerJ),

17
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bpF’a = pF’a layerJ,

bpIn = pIn layerJ,

bpOut = pOut layerJ,

bpW = pW layerJ,

bpAS = pAS layerJ

}

where dazzleJ = wKT <> (dazzleK * f’aK)

dazzleK = bpDazzle layerK

wKT = trans ( bpW layerK )

f’aK = bpF’a layerK

f’aJ = pF’a layerJ

errorGrad :: ColumnVector Double -> ColumnVector Double ->

ColumnVector Double -> Matrix Double

errorGrad dazzle f’a input = (dazzle * f’a) <> trans input

The function trans, used in the definition of wKT, calculates the transpose of a
matrix. The final layer uses Equation (2), repeated below.

∇zLE = zL(x)− t (2)

In the function backpropagateFinalLayer, dazzle is ∇zLE.

backpropagateFinalLayer ::

PropagatedLayer -> ColumnVector Double -> BackpropagatedLayer

backpropagateFinalLayer l t = BackpropagatedLayer

{

bpDazzle = dazzle,

bpErrGrad = errorGrad dazzle f’a (pIn l),

bpF’a = pF’a l,

bpIn = pIn l,

bpOut = pOut l,

bpW = pW l,

bpAS = pAS l

}

where dazzle = pOut l - t

f’a = pF’a l

Back-propagating through the network

We have already introduced the scanl function, which operates on an array from
left to right. For the back-propagation pass, we will use scanr, which operates
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from right to left. Figure 5 illustrates how scanl and scanr will act on the neural
network. The boxes labeled pc and bpc represent the result of each propagation
operation and back-propagation operation, respectively. Viewed in this way, it is
clear that scanl and scanr provide a layer of abstraction that is ideally suited to
back-propagation.

propagate propagate scanr

backprop backpropscanl

layeri-1 layeri layeri+1

pci-1 pci pci+1

bpi-1 bpi bpi+1

Figure 5: A schematic diagram of the implementation.

The definition of the backpropagateNet function is very similar to that of
propagateNet.

backpropagateNet ::

ColumnVector Double -> [PropagatedLayer] -> [BackpropagatedLayer]

backpropagateNet target layers = scanr backpropagate layerL hiddenLayers

where hiddenLayers = init layers

layerL = backpropagateFinalLayer (last layers) target

Updating the weights

After the back-propagation calculations have been performed, the weights can be
updated using Equation (1), which is repeated below.

Wnew = Wold − µ∇E (1)

The code is shown below.

update :: Double -> BackpropagatedLayer -> Layer

update rate layer = Layer { lW = wNew, lAS = bpAS layer }

where wOld = bpW layer

delW = rate ‘scale‘ bpErrGrad layer

wNew = wOld - delW

19
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The parameter name rate is used for the learning rate µ, and the local variable
rate represents the second term in Equation (1). The operator scale performs
element-wise multiplication of a matrix by a scalar.

A functional approach to testing

In traditional unit testing, the code is written to test individual cases. For some ap-
plications, determining the desired result for each test case can be time-consuming,
which limits the number of cases that will be tested.

Property-based testing tools such as QuickCheck [12] take a different approach.
The tester defines properties that should hold for all cases, or, at least, for all cases
satisfying certain criteria. In most cases, QuickCheck can automatically generate
suitable pseudo-random test data and verify that the properties are satisfied, saving
the tester’s time.

QuickCheck can also be invaluable in isolating faults, and finding the simplest
possible test case that fails. This is partially due to the way QuickCheck works:
it begins with “simple” cases (for example, setting numeric values to zero or using
zero-length strings and arrays), and progresses to more complex cases. When a
fault is found, it is typically a minimal failing case. Another feature that helps
to find a minimal failing case is “shrinking”. When QuickCheck finds a fault, it
simplifies (shrinks) the inputs (for example, setting numeric values to zero, or
shortening strings and arrays) that lead to the failure, and repeats the test. The
shrinking process is repeated until the test passes (or until no further shrinking is
possible), and the simplest failing test is reported. If the default functions provided
by QuickCheck for generating pseudo-random test data or for shrinking data are
not suitable, the tester can write custom functions.

An in-depth look at QuickCheck is beyond the scope of this article. Instead,
we will show one example to illustrate the value of property-based testing. What
properties should a neural network satisfy, no matter what input data is provided?
One property is that if the network is trained once with a given input pattern and
target pattern and immediately run on the same input pattern, the error should
be reduced. Put another way, training should reduce the error in the output layer,
unless the error is negligible to begin with. Since the final layer has a different
implementation than the hidden layers, we test it separately.

In order to test this property, we require an input vector, layer, and training vec-
tor, all with consistent dimensions. We tell QuickCheck how to generate suitable
test data as follows:

-- A layer with suitable input and target vectors, suitable for testing.

data LayerTestData =
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LTD (ColumnVector Double) Layer (ColumnVector Double)

deriving Show

-- Generate a layer with suitable input and target vectors, of the

-- specified "size", with arbitrary values.

sizedLayerTestData :: Int -> Gen LayerTestData

sizedLayerTestData n = do

l <- sizedArbLayer n

x <- sizedArbColumnVector (inputWidth l)

t <- sizedArbColumnVector (outputWidth l)

return (LTD x l t)

instance Arbitrary LayerTestData where

arbitrary = sized sizedLayerTestData

The test for the hidden layer is shown below.

-- Training reduces error in the final (output) layer

prop_trainingReducesFinalLayerError :: LayerTestData -> Property

prop_trainingReducesFinalLayerError (LTD x l t) =

-- (collect l) . -- uncomment to view test data

(classifyRange "len x " n 0 25) .

(classifyRange "len x " n 26 50) .

(classifyRange "len x " n 51 75) .

(classifyRange "len x " n 76 100) $

errorAfter < errorBefore || errorAfter < 0.01

where n = inputWidth l

pl0 = PropagatedSensorLayer{ pOut=x }

pl = propagate pl0 l

bpl = backpropagateFinalLayer pl t

errorBefore = P.magnitude (t - pOut pl)

lNew = update 0.0000000001 bpl

-- make sure we don’t overshoot the mark

plNew = propagate pl0 lNew

errorAfter = P.magnitude (t - pOut plNew)

The $ operator enhances readability of the code by allowing us to omit some
parenthesis: f . g . h $ x == (f . g . h) x. This particular property only
checks that training works for an output layer; our complete implementation
tests other properties, including the effect of training on hidden layers. The
classifyRange statements are useful when running the tests interactively; they
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display a brief report indicating the distribution of the test inputs. The function
trainingReducesFinalLayerError specifies that a custom generator for pseudo-
random test data, arbLayerTestData, is to be used. The generator arbLayerTestData
ensures that the “simple” test cases that QuickCheck starts with consist of short
patterns and a network with a small total number of neurons.

We can run the test in GHCi, an interactive Haskell REPL.

ghci> quickCheck prop_trainingReducesFinalLayerError

+++ OK, passed 100 tests:

62% len x 0..25

24% len x 26..50

12% len x 51..75

2% len x 76..100

By default, QuickCheck runs 100 test cases. Of these, 62% of the patterns tested
were of length 25 or less. We can request more test cases: the test of 10,000 cases
below ran in 20 seconds on a 3.00GHz quad core processor running Linux. It would
not have been practical to write unit tests for this many cases, so the benefit of
property-based testing as a supplement to unit testing is clear.

ghci> quickCheckWith Args{replay=Nothing, maxSuccess=10000,

maxDiscard=100, maxSize=100} prop_trainingReducesFinalLayerError

+++ OK, passed 10000 tests:

58% len x 0..25

25% len x 26..50

12% len x 51..75

3% len x 76..100

Conclusions

We have seen that Haskell provides operations such as map, scanl, scanr, and their
variants, that are particularly well-suited for implementing neural networks and
back-propagation. These operations are not unique to Haskell; they are part of a
category of functions commonly provided by functional programming languages to
factor out common patterns of recursion and perform the types of operations that
would typically be performed by loops in imperative languages. Other operations
in this category include folds, which operate on lists of values using a combining
function to produce a single value, and unfolds, which take a starting value and a
generating function, and produce a list.
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Functional programming has some clear advantages for implementing mathe-
matical solutions. There is a straightforward relationship between the mathemat-
ical equations and the corresponding function definitions. Note that in the back-
propagation example, we merely created data structures and wrote definitions for
the values we needed. At no point did we provide instructions on how to sequence
the operations. The final results were defined in terms of intermediate results,
which were defined in terms of other intermediate results, eventually leading to
definitions in terms of the inputs. The compiler is responsible for either finding an
appropriate sequence in which to apply the definitions or reporting an error if the
definitions are incomplete.

Property-based testing has obvious benefits. With minimal effort, we were able
to test the application very thoroughly. But the greatest advantage of property-
based testing may be its ability to isolate bugs and produce a minimal failing test
case. It is much easier to investigate a problem when the matrices involved in
calculations are small.

Functional programming requires a different mind-set than imperative program-
ming. Textbooks on neural network programming usually provide derivations and
definitions, but with the ultimate goal of providing an algorithm for each technique
discussed. The functional programmer needs only the definitions, but it would be
wise to read the algorithm carefully in case it contains additional information not
mentioned earlier.

Functional programming may not be suited to everyone, or to every problem.
However, some of the concepts we have demonstrated can be applied in imperative
languages. Some imperative languages have borrowed features such as first-class
functions, maps, scans and folds from functional languages. And some primar-
ily functional languages, such as OCaml, provide mechanisms for doing object-
oriented programming.

A complete code listing, along with a sample character recognition application,
is available online [10].
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Haskell ab initio: the Hartree-Fock
Method in Haskell

by Felipe Zapata 〈felipe.zapata@edu.uah.es〉
and Angel J. Alvarez 〈a.alvarez@uah.es〉

Scientific computing is a transversal subject where professionals of many fields
join forces to answer questions about the behaviour of Nature using a variety of
models. In this area, Fortran has been king for many years. It is now time to end
Fortran’s tyrannical reign! It is time to use a language which offers a high level
of abstraction; a language which allows a straightforward translation of equations
to code. It is time to use a language which has appropriate tools for parallelism
and concurrency. Haskell is our language of choice: its levels of abstraction lead
to a brief, elegant and efficient code. In this article, we will describe a minimal
but complete Haskell implementation of the Hartree-Fock method, which is widely
used in quantum chemistry and physics for recursively calculating the eigenvalues
of the quantized levels of energy of a molecule and the eigenvectors of the wave
function. Do not be afraid about the formidable name; we will skip most of the
technical details and focus on the Haskell programming.

Joining two worlds

Haskell and its underlying theory have made us ask ourself some irresistible ques-
tions: have those equations written in the piece of paper the same mathematical
meaning of those that we have implemented in Fortran? If programming is as
much mathematical as it is artistic creation, then why are we still working with
such twisted and ugly ideas? You ask the same questions to your workmates and
professors, and after while working locked in your office, you will find out that an
angry mob of Fortran programmers is waiting outside. After all, you dared to say
that a pure and lazy functional language is the future of programming in science!
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While waiting for the mob to get into our office, we will describe the Jacobi algo-
rithm for calculating the eigenvalues and eigenvectors of a symmetric square matrix
using the repa library. Then, equipped with this useful recursive function, we will
see some basic details of the Hartree-Fock methodology and the self-consistent
field (SCF) procedure for iteratively computing the eigenvalues and eigenvectors
of a molecular system. In doing so, we will try to connect the simulation ideas
with the powerful abstraction system of Haskell. We note that there is an excel-
lent collection of modules written by Jan Skibinski for quantum mechanics and
mathematics, but the approach used in those modules is different from ours [1].

The Jacobi Algorithm

The Jacobi Algorithm is a recursive procedure for calculating all of the eigenvalues
and eigenvectors of a symmetric matrix. The standard matrix eigenvalue problem
seeks to find matrices x and λ such that:

Ax = λx

(The λ is a diagonal matrix of the eigenvalues; not a function abstraction!) The
Jacobi algorithm is based on applying a transformation of the form

A∗x∗ = λx∗

where

x∗ = Rx

A∗ = RTAR

The transformation is applied to the original problem in such a way that the
new expression obtained has the same eigenvalues and eigenvectors, but contains
a matrix A* which is diagonal. The matrix R is called the Jacobi rotation matrix,
which is an orthogonal matrix (R-1= RT, i.e. the inverse is equal to the transpose)
with all the entries of the matrix equal to zero except for the diagonal and two
off-diagonal elements in the positions kl and lk of the matrix, as shown below.

R =



1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 . . . Rk,k . . . Rk,l 0
...

...
...

. . .
...

...
0 . . . Rl,k . . . Rl,l 0
0 0 . . . 0 0 1
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When a similar transformation is applied over the matrix A, the off-diagonal
elements of the new matrix A* are equal to zero, meaning that A*

kl = A*
lk = 0.

The idea of the algorithm is to find the largest off-diagonal element of the matrix
A, apply a rotation involving the row and column of the largest element and save
the rotation matrix R. The rotations are applied until all the off-diagonal elements
are lower than a delta. The application of the rotation matrix R over the matrix
A produces the new matrix A*, whose elements are given by

A∗kk = Akk − tAkl (1)

A∗ll = All + tAkl (2)

A∗kl = A∗lk = 0 (3)

A∗kj = A∗jk = A∗kj − s(Alj + τAkj), j 6= k ∧ j 6= l (4)

A∗lj = A∗jl = A∗lj + s(Akj − τAlj), j 6= k ∧ j 6= l (5)

where s, t and τ are functions of Akl.
Once all the rotations are applied, the eigenvalues are the diagonal elements of

the final A* and the eigenvectors EV are columns of the matrix product over all
the Jacobi rotation matrices.

EV =
∏
i=1

Ri

Because the rotation matrices are sparse, a partial product can be calculated in
each rotation step through the following transformation,

R∗jk = Rik − s(Rjl + τRjk) (6)

R∗jl = Ril + s(Rjk − τRjl) (7)

where R* denotes the partial product matrix.

Haskell Implementation

The repa library [2] offers efficient operations over arrays; the data structures and
the functions of this library will be the basis for our implementation.

Since the matrix is symmetric, we can work with either the upper or lower trian-
gular matrix. Then both repa unidimensional unboxed arrays and bidimensional
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import Data . Array . Repa as R

type EigenValues = VU. Vector Double
type EigenVectors = Array U DIM2 Double

data EigenData = EigenData {
e i g e n v a l s : : ! EigenValues

, e i genvec : : ! EigenVectors } der iv ing (Show )

jacobiP : : (Monad m,VU. Unbox Double ) =>
Array U DIM2 Double −>
m LA. EigenData

jacobiP ! a r r = l e t (Z : . dim : . dim ) = extent a r r
t o l e r a n c e = 1 .0 e−9

in j a c o b i a r r (LA. i d e n t i t y dim ) 0 t o l e r a n c e

j a c o b i : : (Monad m, VU. Unbox Double )
=> Array U DIM2 Double
−> Array U DIM2 Double
−> Step
−> Tolerance
−> m EigenData

j a c o b i ! arrA ! arrP step t o l

| s tep > 5∗dim∗dim = error ”Jacobi method did not converge ”

| otherwise = case abs maxElem > t o l o f
True −> do

arr1 <− rotateA arrA ( matrixA arrA args )
ar r2 <− rotateR arrP ( matrixR arrP args )
j a c o b i ar r1 arr2 ( s tep +1) t o l

Fal se −> return $
EigenData ( diagonalElems arrA ) arrP

where (Z : . dim : . dim ) = extent arrA
sh@(Z : . k : . l ) = maxElemIndex arrA
maxElem = arrA ! sh
args = parameters maxElem a D i f f k l
a D i f f = tova l ( l , l ) − t ova l (k , k )
tova l ( i , j ) = arrA ! (Z : . i : . j )

Listing 3.1: Jacobi Method
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arrays duplicating the data are suitable choices to represent our matrix. We have
chosen the bidimensional representation.

The main function has the signature depicted in Listing 1, where the Jacobi
function takes as input a bidimensional array representing the symmetric matrix
A, a bidimensional array for the rotational matrix R, the current iteration (an
integer) and the numerical tolerance (which is just a synonym for a double). The
function returns an algebraic data type containing the eigenvalues and eigenvectors,
represented as a unboxed vector and a repa bidimensional matrix, respectively.
The jacobiP function is the driver to initialize the rotation procedure, using the
identity matrix as the initial value of the matrix R.

The first guard in the Jacobi function takes care of the maximum number of
rotations allowed, where dim is the number of rows (or columns) of the symmetric
matrix. The second guard checks that the greatest off-diagonal element of the
symmetric matrix is larger than the tolerance. If it is not, then the matrix is
considered diagonalized and we return an EigenData value containing the eigen-
values in the diagonal of the symmetric matrix arrA and the final rotation matrix
contained in arrP.

Parallel computation on arrays in repa is abstracted using a generic monad m,
as stated in the signature of the Jacobi function; therefore, rotateA and rotateR
are monadic functions. Taking advantage of syntactic sugar, we extract the two
new rotated matrices arr1 and arr2 and bind them to a new call of the Jacobi
function. For calculating the k and l indexes, the maxElemIndex function finds
the largest index of the bidimensional array. Finally, the parameters functions
compute an algebraic data type containing the numerical parameters required for
the rotation functions.

Listing 2 contains the implementation of rotateA. The key piece of the rotation
implementation is the fromFunction function, which is included in the repa library
and has the following signature fromFunction :: sh -> (sh -> a) -> Array D sh
a. This function creates an array of a given shape from a function that takes as
an argument an index of an entry in the new array, and calculates the numerical
value for that entry. The result is a “delayed” array which can be evaluated in
parallel using the computeUnboxedP function. Taking advantage of the symmetric
properties of the matrix, we can rotate only the upper triangular matrix and leave
the rest of the elements untouched. Therefore, we pass to rotateA a partially
applied matrixA, which takes the indexes m and n for an upper triangular matrix
and generates the numerical values using equations (1) to (5), leaving the values
below the diagonal untouched.

The implementation of rotateR only differs from the previous one, in that equa-
tions (6) and (7) are used to calculate the numerical values and that the whole
matrix is rotated not only the triangular part, as depicted in Listing 3.
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rotateA : : (Monad m ,VU. Unbox Double ) =>
Array U DIM2 Double −>
( Int −> Int −> Double ) −>
m( Array U DIM2 Double )

rotateA ! a r r ! fun =
computeUnboxedP $ fromFunction ( extent a r r )

$ ( \sh@(Z : . n : . m) −>
case n <= m o f

True −> fun n m
Fal se −> ar r ! sh )

matrixA : : VU. Unbox Double =>
Array U DIM2 Double −>
Parameters −>
Int −> Int −> Double

matrixA ! ar r ( Parameters ! maxElem ! t ! s ! tau ! k ! l ) n m
| (n ,m) == (k , l ) = 0 .0
| (n ,m) == (k , k ) = va l − t ∗maxElem
| (n ,m) == ( l , l ) = va l + t ∗maxElem
| n < k && m == k = val − s ∗( t ova l (n , l ) + tau∗ va l )
| n < k && m == l = va l + s ∗( t ova l (n , k ) − tau∗ va l )
| k < m && m < l && n == k = val − s ∗( t ova l (m, l ) + tau∗ va l )
| k < n && n < l && m == l = va l + s ∗( t ova l (k , n ) − tau∗ va l )
| m > l && n == k = val − s ∗( t ova l ( l ,m) + tau∗ va l )
| m > l && n == l = va l + s ∗( t ova l (k ,m) − tau∗ va l )
| otherwise = val

where va l = tova l (n ,m)
tova l ( i , j ) = ar r ! (Z : . i : . j )

Listing 3.2: rotateA function
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rotateR : : (Monad m ,VU. Unbox Double ) =>
Array U DIM2 Double −>
( Int −> Int −> Double ) −>
m( Array U DIM2 Double )

rotateR ! a r r ! fun =
computeUnboxedP $ fromFunction ( extent a r r )

$ ( \sh@(Z : . n : . m) −> fun n m)

matrixR : : VU. Unbox Double =>
Array U DIM2 Double −>
Parameters −>
Int −> Int −> Double

matrixR ! a r r ( Parameters ! maxElem ! t ! s ! tau ! k ! l ) n m
| m == k = val − s ∗ ( ( t ova l (n , l ) ) + tau∗ va l )
| m == l = va l + s ∗ ( ( t ova l (n , k ) ) − tau∗ va l )
| otherwise = val

where va l = tova l (n ,m)
tova l (x , y ) = arr ! (Z : . x : . y )

Listing 3.3: rotateR function

Performance: When to be lazy

As we already know, Haskell is a non-strict language, where major implementations
(for example, GHC) use a strategy called call-by-need or laziness to evaluate the
code.

There is a slight difference between laziness and non-strictness. Non-strict se-
mantics refers to a given property of Haskell programs that you can rely on: nothing
will be evaluated until it is needed. The way we apply this strategy to our code
is by using a mechanism called lazy evaluation. Lazy evaluation is the mechanism
used by Haskell to implement non-strictness, using a device called the thunk.

Laziness can be a useful tool for improving performance on large arrays as one
would deploy schemes that do not need to evaluate all array members to compute
certain matrix operations. However, in the case where most matrix values will
eventually be evaluated, it will reduce performance by adding a constant overhead
to everything that needs to be evaluated.

Furthermore, due to laziness, function arguments will not always be evaluated,
so they are instead recorded on the heap as a thunk in case they are evaluated
later by the function.

Storing and then evaluating most thunks is costly, and unnecessary in this case,
when we know most of the time the complete array of values needs to be fully
evaluated. So, instead, it is necessary to enforce strictness when we know it is
better. Optimising compilers like GHC yet try to reduce the cost of laziness
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type EigenValues = VU. Vector Double
type EigenVectors = Array U DIM2 Double
data EigenData = EigenData {

e i g e n v a l s : : ! EigenValues
, e i genvec : : ! EigenVectors } der iv ing (Show )

Listing 3.4: Strict data types for eigenvalue operations

using strictness analysis [3], which attempts to determine if a function is strict
in one or more of its arguments, (which function arguments are always needed
to be evaluated before entering the function). Sometimes this leads to better
performance, but sometimes the programmer has better knowledge about what is
worth evaluating beforehand.

With bang patterns, we can hint the compiler about strictness on any binding
form, making the function strict in that variable. In the same way that explicit
type annotations can guide type inference, bang patterns can help guide strictness
inference. Bang patterns are a language extension, and are enabled with the
BangPatterns language pragma.

Data constructors can be made strict, thus making your values strict (weak head
normal form) whenever you use them. You can see that we also used unboxed types
of the vector library, as those ones are carefully coded to guarantee fast vector
operations. You can see some examples of our data types in Listing 4, following
the suggestion given by the repa authors [4].

As we have seen before, Jacobi’s method its a recursive algorithm that attempts
to converge values below a certain threshold in order to compute the desired A*

matrix. As we are using recursion we keep passing arguments every iteration and
we need to ensure those arguments will be evaluated just before we pass them,
avoiding to carry thunks along the way. These arguments must be forced, as
shown in Listing 5. The hope is that the conjunction of strict values and tight
loops will guide the compiler on the way of generating unboxed values as much as
it is desired.

Benchmark

In order to establish a baseline for the performance of our code, we wrote a Python
implementation, as it allows us to compare ”near C speed code“ (via Numpy’s built-
in array type) with our repa implementation. We developed a test framework for
comparing test runs between Python and Haskell.

Every test run loads a 100 × 100 matrix to be diagonalized. Our test bed was
an Intel Core i5 @2.5 GHz laptop with 8GB RAM installed with OpenSuSE 11.4
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j a c o b i ! arrA ! arrP step t o l
. . .
. . .

a r r1 <− rotateA arrA ( matrixA arrA args )
arr2 <− rotateR arrP ( matrixR arrP args )
j a c o b i ar r1 arr2 ( s tep +1) t o l

. . .

. . .

Listing 3.5: Jacobi strict argument passing

Prototype Threads Total Memory (MB) Productivity (%)
Python 1 - 99
Haskell -N1 1 8 95.6
Haskell -N2 2 11 95.9
Haskell -N4 3 14 96.7

Table 1: Space Comparison

x64.

As we have little expertise with Haskell performance tuning, we did not initially
try to outperform the Python code. Despite this, we got near Python times with
very little effort. However, we were concerned about the garbage collector, as our
code consistently spent several seconds on garbage collection.

Provided that Haskell delivers parallel garbage collection (from GHC 7.0 on-
wards) we tried to perform as much memory management in parallel as mutation
activity, in order to free mutator threads (running repa threads mainly) from
garbage related work.

From the GHC manual [5], we found some experimental switches to allow the
RTS to perform such activities in parallel with user code and also the possibility
of performing parallel garbage collection only on younger generations. We tried
to see if this set-up would allow repa threads to run concurrently with garbage
collection without disrupting each other.

As it is shown in Table 3, We record the estimated memory side in the Haskell
prototypes just to see the effects of different switches in the RTS. While in the
Python prototype, we did not measure any memory usage at all. Also, we tried
to see the overall effect of increasing the available cores (mainly the effect in the
garbage collector). As you can see in Table 3 the maximal performance is achieved
with two cores, adding more core does not speed up the calculation at this step of
development. Further test will be carry out in the future.

33



The Monad.Reader Issue 21

Prototype Mutator Time Mutator (elapsed) GC Time GC (elapsed)
Python 60.2s - - -
Haskell -N1 47.0s 46.8s 2.2s 2.2s
Haskell -N2 49.2s 34.8s 2.1s 1.8s
Haskell -N4 63.8s 35.0s 2.2s 1.9s

Table 2: Time Comparison

Being almost newcomers on this arena, we still are not certain about what is
going on, but in the end we manage to low the running times (mostly by lowering
garbage collection times) but this is a matter we will work in the future (we are
afraid of that). Therefore we will provide criterion based benchmarking facilities
in our cabal package to allow readers to test and validate our measurements.

The Hartree-Fock Method

We are now in a position to talk about Hartree-Fock. In the beginning of the
previous century, it was discovered that the energy of physical systems like atoms
and molecules is quantized, contradicting our intuition that it must be a contin-
uous. The scientific community had no choice but to accept the mathematical
beauty of quantum theory. With this theory, we can study any molecular sys-
tem we like. . . so long as we can solve the Schrödinger equation! Thus began the
race to develop approximate methods for solving the Schrödinger equation. The
Hartree-Fock method was established as the basic methodology upon which more
accurate methods were developed. These methods, which only used fundamental
constants of the mathematics and quantum physics without introducing any pa-
rameters (apart from the mass, charge, etc...), are called “ab initio” calculations.
These methods are referred to as “from the beginning” or “first principles” meth-
ods. By the middle of the previous century, the first programs were written to
solve the iterative equations that are the core of the Hartree-Fock method. These
programs have persisted until today; there is still an irrational and cruel practice
in many universities of punishing Ph.D. students in physics and chemistry with the
debugging of thousand of lines of code written in Fortran 77; code that is written
poorly and documented even worse.

The idea of the Hartree-Fock method is to solve the time-independent Schrödinger
equation that can be formulated as

HΨ = EΨ

Where Ψ is the famous wave function that represents the physical system and H
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is the Hamiltonian operator. This equation can be transformed to our old friend
the eigenvalue problem and solved using the Jacobi Method.

In quantum mechanics, the wave function contains all of the information about
a system that we may need, while the operators represent properties that we
can measure (called observables). In particular, the operator extracts information
from the wave function: in the case of the Schrödinger equation, the Hamiltonian
operator extracts the energy from the wave function that describes the electrons
and nuclei of the molecules.

The only problem with the Schrödinger equation is that we do not know how to
solve it! (Actually, there are solutions but they are only for the most trivial cases).
Some approximations must be introduced to bring the equation into a formulation
that it is solvable, though the nature of such approximations is out of the scope
of this article. Henceforth, we will only be interested in solving the part of the
system involving electrons. Do not run away, we are almost ready to have fun.

Since we our only interested in the electrons, the Schrödinger equation could be
rewritten as

Helec Φelec = Eelec Φelec

where the subindex elec refers to the “electronic” part of the system.
In other words, we are trying to build an equivalent system which only describes

the electrons. To approximate the electronic wave function indicated by Φelec,
we will use a product of monoelectronic functions. A monoelectronic function is
just an abstraction of how electrons behave around a nuclei. Each monoelectronic
function (actually, the square of it) gives us the probability of finding an electron
at some position around the nucleus. Each of these functions depends on the
coordinates of the electron as well as the coordinates of the particular nucleus
around which it is most probable to find the electron. Electrons “live”, in some
way, around the atomic nuclei.

In this manner, the electronic wave function is expanded as follows,

Φelec(r1, r2, ..., rn) = χ1(r1)χ2(r2)...χn(rn) (8)

where ri is the coordinate of the nth electron. Note that the coordinates of the
nuclei do not appear in these equation, because we have assumed that the nuclei
are fixed: this is the Born-Oppenheimer approximation.

Now, we can redefine the electronic Schrödinger equation as a set of n-coupled
equations of the form

fiχi(ri) = εiχi(ri) (9)

where fi is the Fock operator which is made up of three operators,

f̂i = T̂i + V̂i + V̂ HF
i (10)
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The first term in the Fock operator represents the kinetic energy, the second
term represents the electronic interactions between nuclei and the ith electron,
and the last term represents the interaction between the ith electron and all of the
other electrons.

The Basis Set

How do we represent the monoelectronic functions of equation (8)? For reasons
that will become clear later, a set of Gaussian functions is usually used; the list of
Gaussian functions which represents the monoelectronic function is known as the
basis set. Gaussian functions have the form,

φ(R, α, l,m, n) = xlymzne−αR
2

(11)

Every basis set depends on the nuclear coordinates around which the expansion
is made, denoted by R. Each monoelectronic function is expressed as linear com-
bination of m Gaussian functions, each of which is multiplied by a coefficient,

χi =
M∑
µ=1

Cµiφµ (12)

This expansion should contain infinite terms, in order to fully describe the original
function. But if we want to compute something at all, we should choose a finite
basis.

The Roothaan-Hall Equations

The basis set is useful because we do not know the analytical form of the monoelec-
tronic functions. The goal of the Gaussian basis set is to transform equation (9),
which we still do not know how to solve, into some easy equation on matrices.
When we do so, we arrive to the following matrix equation:

FC = SCε (13)

In this equation, the Fock F operator now has a matrix representation and is
multiplied by the C matrix which contains the coefficients of (12). ε is a diagonal
matrix containing the energies for every equation like (9) and the S matrix called
the overlap matrix, whose meaning will be discussed later. Notice that (13) would
be an eigenvalue problem if there was no S matrix.

Matrices representing operators are Hermitian matrices, which are the general-
ization of symmetric matrices to the complex numbers. We will not worry about
this, however, as our representation contains only real entries and therefore our
operators are symmetric matrices.
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type NucCoord = [ Double ]

data Operator = T | V NucCoord
der iv ing Show

(<<|) : : ( NucCoord , Bas i s ) −> Operator −> ( ( NucCoord , Bas i s ) , Operator )
b1 <<| op = ( b1 , op )

(|>>) : : ( ( NucCoord , Bas i s ) , Operator ) −> ( NucCoord , Bas i s ) −> Double
( b1 , op ) |>> b2 = case op o f

T −> t i j T o t a l b1 b2
V rc −> v i j T o t a l b1 rc b2

k i n e t i c 1 2 = ( r1 , b1 ) <<| T |>> ( r2 , b2 )
p o t e n t i a l 1 2 = ( r1 , b1 ) <<| V r3 |>> ( r2 , b2 )

Listing 3.6: Operators definition

Introducing a basis set implies that the Fock operator should be expressed in
the basis introduced. The question is this: how do we express the operator in the
Gaussian basis set? The answer is that every element of the Fock matrix is just
some mathematical operation involving the Gaussian functions and Fock operator.
The Fock matrix entries are given by the following set of integrals,

Fαβ =

∫
φα(ri) f̂ i φβ(ri)dri

In other words, the element (αβ) in the Fock matrix representation F is the
integral of the the αGaussian function multiplied by the Fock operator of (9)
applied to the βGaussian function.

Paul Dirac introduced a shorter and more elegant notation for these kinds of
integrals. Using the Dirac notation, these integrals are rewritten as

〈φα | F̂ | φβ〉 = Fαβ (14)

Since Haskell is a great language to build domain specific languages, we have seen
a great opportunity to implement our own DSL, introducing the Dirac notation
directly in the code. This notation will be introduced in the next section.

The Fock Matrix and the core Hamiltonian

In Listing 6, we define the infix notation for Dirac notation: every monoelectronic
function over which the operator is applied is represented by a tuple containing
the basis in which the function is expanded and the nuclear coordinates. Then, an
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hcore : : [ NucCoord ] −> [ Bas i s ] −> [ ZNumber ] −> Nelec −> Array U DIM1
Double

hcore coords b a s i s atomicZ ne l e c =
LA. l ist2ArrDIM1 dim ( cartProd ‘ using ‘ pa rL i s t rdeepseq )

where dim = ( n e l e c ˆ2 + n e l e c ) ‘ div ‘ 2
l i s t = z ip coords b a s i s
cartProd = do

( i , atomi ) <− z ip [ 1 . . ] l i s t
( j , atomj ) <− z ip [ 1 . . ] l i s t
guard ( i<=j )
l e t sumVij = f o l d l 1 ’ (+) . g e t Z i p L i s t $

(\ z rc −> ((−z ) ∗ atomi <<|Vij rc |>> atomj ) )
<$> Z ipL i s t atomicZ <∗> Z ipL i s t coords

return $ ( atomi <<|Ti j |>> atomj ) + sumVij

Listing 3.7: Core Hamiltonian

algebraic data type is used for representing the operators that make up the Fock
operator. Using the two infix operators of Listing 6, we can squeeze the operators of
(10) into the middle of two monoelectronic functions, giving us a representation in
Dirac notation, as exemplified by the kinetic and potential expressions in Listing 6.
We use the Dirac notation as a synonym for other functions behind the scenes,
helping with the readability of the code.

The integrals resulting from the kinetic and electron-nucleus operators applied
on the Gaussian functions have an analytical solution, but for the interaction
among the electrons we do not have an analytical solution for more than 3 elec-
trons interacting among themselves; this is the many-body problem. To deal with
this, we applied a very human principle: if you do not know how to solve some
problem, ignore it! Hence, once we ignore interactions between electrons, we have
our first representation of the Fock matrix. This matrix is called the core matrix
Hamiltonian.

Before going into details about the core Hamiltonian, let’s take a look at its
form. Below is the equation describing the entries of the core Hamiltonian:

HCoreij = 〈χi | T̂ | χj〉+
N∑
k=1

〈χi |
1

Rk

| χj〉 (15)

Each element of the core Hamiltonian matrix is the sum of integrals represented
using the Dirac notation of (14). This equation tells us that each element is
composed of the kinetic energy plus the summation of interactions between one
electron and all the n nuclei that made up the molecule.
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In agreement with the Dirac notation of Listing 6, in our implementation we
represent the monoelectronic function χi with a tuple (ri,basis), containing the
nuclear coordinates and the basis for doing the expansion of (12).

In Listing 7, we show a Haskell implementation of our first representation of the
core Hamiltonian. Since the matrix is symmetric, we have decided to implement
it as a unidimensional array containing the upper triangular matrix. The function
for calculating the matrix requires the nuclear coordinates of all atoms, the basis
used for expanding the monoelectronic functions, the charge of each atom (the
Znumber, necessary to calculate the attraction between the nuclei and electrons),
and the number of electrons. First, we calculate the entries of the matrix as a
parallel list with a parallel strategy (see more about strategies at [6]). In order
to take maximal advantage of sparks, a right level of granularity must be chosen;
each monoelectronic function should contain a minimal set (minimal number of
Gaussian functions) in order to balance the workload of each processor. This is a
good thing, because in real calculations we have very large basis sets.

After we have evaluated the list using the auxiliary functions list2ArrDIM1 and
the dimension of the array, the list is transformed into an unboxed unidimensional
repa array. The function cartProd which builds the entries of the core Hamiltonian
takes advantage of the list monad. We first form a list of tuples representing the
monoelectronic functions by zipping all the coordinates with their respective basis.
Then, we generate the indexes i,j and the associated monoelectronic functions for
those indexes in the core Hamiltonian matrix. Using a guard, we ensure that only
the indexes of upper triangular matrix are taken into account. Then, according to
(17), we return the result of applying the kinetic operator to two monoelectronic
functions plus a summation which use the applicative style and the alternative
applicative functor instance of the list functor, the ZipList instance. There is
a lambda function that accepts two parameters, the atomic number Z and the
nuclear coordinates, and returns the desired interaction. We partially apply this
function to every element of the ZipList which contains all the atomic numbers;
then, we apply the functor ZipList of partially applied functions to the ZipList
containing all the coordinates. Finally, we fold over the final list after extracting
the result with getZipList.

The overlap matrix and the Jacobi Method

The overlap matrix is a result of expanding the monoelectronic functions using a
basis of functions which are not completely orthogonal. The nature of the overlap
matrix can be visualized if you think about a 2-dimensional vector: you can write
any real 2-dimensional vector using a linear combination of the two vectors (1,0)
and (0,1); this is because the vectors are orthogonal to each other. But in the case
of using a basis that is not orthogonal, non-linear terms will appear and it is not
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possible to represent the vector as a linear combination. However, if you manage
to normalize the basis in some way, a linear expansion can be used with the new
normalized basis. In the same fashion, if you make a linear expansion of a function
in some basis, the functions of the basis must be orthogonal with each other. Each
element of the overlap matrix has the form shown below. An orthogonalization
procedure makes one the elements for which i = j in (14), and the rest of elements
become zero.

Now, we will put all the pieces together in the implementation.

Sij =

∫ +∞

−∞
dz

∫ +∞

−∞
dy

∫ +∞

−∞
φ∗iφjdx (16)

In the previous section, we have learnt how to build an approximation of the Fock
matrix, but for solving our target equation (13), we needed to get rid of the overlap
matrix. A transformation for the overlap matrix is required in such a way that the
overlap matrix is reduced to the identity matrix as follows,

X†SX = I (17)

Where I is the identity matrix.
The famous physicist Per-Olov Löwdin proposed the following transformation,

which is called symmetric orthogonalization:

X = S−
1
2 (18)

Because S is an Hermitian matrix, S-1/2 is Hermitian too.

S−
1
2
†

= S−
1
2

then

S−
1
2 S S−

1
2 = S−

1
2 S

1
2 = S0 = 1

When it is applied the transformation in (14), we get a new set of equations of the
form

F′C′ = C′ε (19)

where

F′ = X†FX and C′ = X−1C (20)

Finally, we have arrived at a standard eigenvalue problem! However, we need
to generate the symmetric orthogonalization of (17). The matrix S-1/2 can be
visualized as the application of the square root over the matrix S. For calculating
a function over a diagonal matrix, we simply apply the function over the diagonal
elements. For non-diagonal matrices, they should be first diagonalized, and then
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import q u a l i f i e d LinearAlgebra as LA
import q u a l i f i e d Data . Vector . Unboxed as VU

symmOrtho : : (Monad m, VU. Unbox Double )
=> Array U DIM2 Double
−> m ( Array U DIM2 Double )

symmOrtho ! a r r = do
symmOrtho ar r = do

eigData <− jacobiP $ ar r
l e t e igVal = LA. e i g e n v a l s eigData

e igVecs = LA. e igenvec eigData
invSqrt = VU. map ( r e c ip . sqr t ) e igVal
diag = LA. vec2Diagonal invSqrt

eigVecTrans <− LA. transpose2P eigVecs
mtx1 <− LA. mmultP e igVecs diag
LA. mmultP mtx1 eigVecTrans

Listing 3.8: Symmetric Orthogonalization

the function applied over the diagonal elements. Therefore, the S-1/2 matrix can
be computed as:

S−
1
2 = Us−

1
2 U† (21)

where the lower case s-1/2 is a diagonal matrix.

The Jacobi algorithm can be used to diagonalizing a matrix M, where the eigen-
values calculated are the entries of the diagonal matrix and the eigenvectors make
up the matrix that diagonalized M, which are denoted as U in (21).

In Listing 8, we have the symmetric orthogonalization procedure to calculate
the S-1/2 matrix. The LinearAlgebra module contains some subroutines tailored
for performing matrix algebra using repa. Some of these functions are taken from
the repa examples [7], the rest are based on the repa library functions. The sym-
mOrtho function only requires the overlap matrix, which is first diagonalized using
the Jacobi algorithm, resulting in an algebraic data type containing the eigenvalues
as an unboxed vector and the eigenvectors as a bidimensional matrix. The eigenvals
and eigenvec are accessor functions for retrieving the eigenvalues and eigenvectors,
respectively. Then, the inverse square root of the eigenvalues is taken and the
resulting vector a new diagonal matrix is created using vec2Diagonal. Using the
functions transpose2P and mmultP, which are the transpose and the matrix mul-
tiplication functions respectively, the diagonal function is multiplied by the matrix
containing the eigenvalues and by its transpose, resulting in the desired X matrix
of (18).

Using the symmetric orthogonalization procedure and the Jacobi method, equa-
tions (19) and (20) can be solved, giving us a first approximation of the energies
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of the system.

The Variational Method

In the previous section, we derived a first approximation for the calculating the
coefficients which defined the electronic wave function by ignoring the interactions
between electrons. Unfortunately, we cannot ignore the interactions between elec-
trons. An analytical formulation for the interaction of many electrons is not known;
instead, we calculate only interactions between pairs of electrons, approximating
the overall force acting on electron as the average of the interacting pairs. The
average is built using the coefficient for expanding the monoelectronic functions
of (12). The average force rises a fundamental question: how do we know that
the chosen coefficients of (12) are the best ones for approximating the interactions
among the electrons? The variational principle is the answer.

Theorem 1 (Variational Principle). Given a normalized function Φwhich vanishes
at infinity, the expected value of the Hamiltonian is an upper bound to the exact
energy, meaning that

〈Φ | H | Φ〉 > ε

This theorem states that if we have a function for representingΦelec, the resulting
energy after applying the Hamiltonian operator over the function is always greater
that the real energy. Because Φelec depends on the expansion coefficients of (12),
if we vary those coefficients in a systematic way we can generate a better electronic
wave function Φelec and a more accurate value for the energy.

The Contraction: Squeezing Dimensions

The recursive procedure described previously required the inclusion of the operator
for describing the pair interactions between electrons. Then, the Fock Matrix can
be reformulated as,

F = HCore + G (22)

where the G term stands for the interactions between electrons. This term de-
pends on the coefficients matrix in (13), and on two types of integrals associated
with the interacting electrons (J and K, called the Coulomb and interchange inte-
grals). To give an analytical expression to the previous term, let us define a matrix
that is function of the coefficients used for expanding the monoelectronic function,
called the density matrix, whose elements are given by

Pαβ = 2
n∑
i=1

CαiCβi (23)
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import Data . Array . Repa as R

calcGmatrix ! dens i ty ! i n t e g r a l s =
computeUnboxedP $ fromFunction (Z : . dim )

(\ (Z : . i ) −> sumAllS $
fromFunction (Z : . n e l e c )

(\ ( Z : . l ) −>
l e t vec1 = u n s a f e S l i c e dens i ty ( getRow l )

vec2 = map2Array i n t e g r a l s sortKeys ( i , l )
n e l e c

in sumAllS . R. zipWith (∗ ) vec1 $ vec2 ) )

where getRow x = (Any : . ( x : : Int ) : . A l l )
(Z : . n e l e c : . ) = extent dens i ty
dim = ( n e l e c ˆ2 + n e l e c ) ‘ div ‘ 2

Listing 3.9: Computation of the G matrix

where the summation is carried out over the number of electrons.
The elements of the G matrix are given by,

Gαβ =
n∑
k=1

n∑
l=1

Plk ∗ (〈αβ | kl〉 − 1

2
〈αl | kβ〉) (24)

In an imperative language, the usual way of implementing the G matrix is to
nest four loops, using a four dimensional array for saving the J and K integrals
which depend on four indexes as shown in (23). In our prototype, we have chosen
a Map for storing the numerical values of the integrals, since is very easy to work
with in our implementation. (Unboxed arrays could be a better data structure to
query the values of the integrals.)

Before we dive into this multidimensional sea, a rearrangement of (24) can help
us bring this equation to more familiar lands,

Gαβ =
∑
l=1

[
Pl1, Pl2, . . . Pln

]
•
[
〈αβ || 1l〉 , 〈αβ || 2l〉 , . . . 〈αβ || nl〉

]
(25)

where

〈αβ || kl〉 = 〈αβ | kl〉 − 1

2
〈αl | kβ〉 = J −K (26)

Equations (25) and (26) tell us that an entry of the G matrix can be considered
as a summation over an array of dot products between vectors.

In Listing 9, the implementation for calculating the G matrix is shown, which for-
tunately is a symmetric matrix too. We use the recommended strategy suggested
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map2Array : : M.Map [ Int ] Double
−> ( [ Int ] −> [ Int ] )
−> ( Int , Int )
−> Nelec
−> Array D DIM1 Double

map2Array mapIntegra l s sortKeys ( i , l ) n e l e c =
R. fromFunction (Z : . n e l e c )

(\ (Z : . indx ) −>
l e t coulomb = LA. map2val mapIntegra l s $ sortKeys [ a , b , indx , l ]

exchange = LA. map2val mapIntegra l s $ sortKeys [ a , l , indx , b ]
in coulomb − 0 .5∗ exchange )

where ne = nelec−1
p a i r s = [ ( x , y ) | x <− [ 0 . . ne ] , y <− [ 0 . . ne ] , x<=y ]
(a , b ) = p a i r s ! ! i

Listing 3.10: The Map to Array Function

by the repa authors, evaluating in parallel the whole array, but using sequential
evaluation for the inner loops. With the previous notes in mind, we begin our jour-
ney from the first fromFunction which is in charge of building the whole array: we
pass to this function the dimension of the final array (which is an upper triangular
matrix) and the function for building the elements. Notice that as the implemen-
tation is done using unidimensional arrays for representing triangular matrices, the
first index i encodes the α and β indexes of (25), meaning that i should be de-
coded as the index of a bidimensional array. According to equations (25) and (26),
the first sumAllS function adds up all the dot products, the innermost sumAllS
collects the elements of each dot product, while the repa zipWith function carries
out the desire dot operation between the vectors. The first vector is simply a row
of the density matrix; the second vector, however, deserves a detailed analysis.

The four indexes integrals have the following symmetry:

〈αβ | kl〉 = 〈βα | kl〉 = 〈βα | lk〉 = 〈αβ | lk〉
= 〈kl | αβ〉 = 〈lk | αβ〉 = 〈lk | βα〉 = 〈kl | βα〉

(27)

Therefore, we only need to calculate one of the eight integrals. Nevertheless, a
systematic way should be selected for choosing the indexes of the integral to be
evaluated. The increasing order is a good criteria; from the eight possible integrals,
only the integral with the lowest indexes is calculated and stored in a map.

In Listing 10, there is an implementation of the map2Array function for cal-
culating the vector of integrals used in the computation of the G matrix. The
arguments of this functions are the map containing the integrals, a function for
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sorting the keys, two indexes provided for the calcGmatrix function and the total
number of electrons. The two indexes are used for generating the key of the desired
integral. The first of these indexes encodes the α and β indexes of (24) and (25);
to decode these indexes, a list of tuples representing the indexes of a bidimensional
matrix is calculated; then, the ith index of the unidimensional array corresponds to
the indexes (α,β). The second index corresponds to the row of the density matrix
according to (25). Finally, the map2val function, which is a lookup function with
some error reporting properties, retrieves the required key for the map of integrals
and builds the numerical values of the vector. You may have been wondering why
we have use a list of tuples for decoding the indexes instead of using the functions
toIndex and fromIndex provided by the class shape of repa. The problem is that
we are working with a unidimensional representation of diagonal matrices and we
cannot use this pair of functions. If you are unconvinced, try using the fromIndex
function to flatten an array representing a diagonal matrix.

The map2Array function returns a delayed array for performance reasons: it is
more efficient to carry the indices of the elements, perform some operations with
them, and finally evaluate the whole array, rather than compute the array in each
step [2].

The Self Consistent Field Procedure

The variational method establishes a theoretical tool for computing the best wave
function. Starting from a core Hamiltonian, we derived an initial guess for the
wave function. But we needed to account for the fact that electrons interact
among themselves; therefore, we added some contribution for the description of
this behaviour the G matrix term in (22). We still do not know how close is this
new guess to the real system; therefore, we apply an iterative method to improve
the wave function.

The Hartree-Fock self consistent field method is an iterative procedure which
makes use of the variational principle to systematically improve our first guess
from the core Hamiltonian.

It is now time to assemble the machinery. The SCF procedure is as follows:
1. Declare the nuclear coordinates, the basis set and the nuclear charges of all

atoms.
2. Calculate all the integrals.
3. Diagonalize the overlap matrix using equations (17) and (18).
4. Compute a first guess for the density matrix (using the core Hamiltonian).
5. Calculate the G matrix.
6. Form the Fock matrix adding the core Hamiltonian and the G matrix.
7. Compute the new Fock matrix F’ using (20).
8. Diagonalize F’ obtaining C’ and ε’.
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data HFData = HFData {
getFock : : ! ( Array U DIM1 Double )

, g e tCoe f f : : !LA. EigenVectors
, getDens i ty : : ! ( Array U DIM2 Double )
, getOrbE : : !LA. EigenValues
, getEnergy : : ! Double} der iv ing (Show )

scfHF : : (Monad m, VU. Unbox Double )
=> [ NucCoord ]
−> [ Bas i s ]
−> [ ZNumber ]
−> Nelec
−> m (HFData)

scfHF coords b a s i s z l i s t n e l e c= do
l e t core = hcore coords b a s i s z l i s t n e l e c

dens i ty = LA. zero n e l e c
i n t e g r a l s = c a l c I n t e g r a l s coords b a s i s n e l e c

xmatrix <− symmOrtho <=< LA. triang2DIM2 $ mtxOverlap coords
b a s i s n e l e c

s c f core dens i ty i n t e g r a l s xmatrix 0 500

Listing 3.11: The Interface function

9. Calculate the new matrix of coefficients C using C = XC’.
10. Compute a new density matrix using the above C matrix and (23).
11. Check if the new and old density matrix are the same within a tolerance, if

not, return to item 5 and compute again the G matrix.
12. Return the energies along with the Fock and the density matrices.

Now, using the syntactic sugar of the monads, we can cook our Hartree-Fock cake.
First, a function can be set for collecting all the required data before forming the
G matrix. In Listing 11 is the implementation of the scfHF function acting as
collector of the required data and as interface with client codes asking for Hartree-
Fock calculations. The algebraic data type containing the results is also shown.

The strict algebraic data type HFData stores: the Fock matrix as a triangular
matrix; the matrix of coefficients EigenVectors ; the density matrix; the eigenvalues
of the equation EigenValues (19), which are called the orbital energies; and the
total energy, which is given by the following expression,

E =
1

2

∑
i

∑
j

Pji(HCoreij + Fij) (28)

where P is the density matrix.
The scfHF is in charge of building the core Hamiltonian and calculating the

map containing the integrals for computing the G matrix (for the first guess of the
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s c f : : (Monad m, VU. Unbox Double )
=> Array U DIM1 Double
−> Array U DIM2 Double
−> M.Map [ Int ] Double
−> Array U DIM2 Double
−> Step
−> Int
−> m(HFData)

s c f ! core ! o ldDens i ty ! i n t e g r a l s ! xmatrix s tep maxStep

| s tep < maxStep = do
fockDIM1 <− f ock core o ldDens i ty i n t e g r a l s
hfData <− diagonalHF fockDIM1 xmatrix
e t o t a l <− v a r i a t i o n a l E core fockDIM1 oldDens i ty
l e t newHFData = hfData {getFock=fockDIM1 , getEnergy=e t o t a l }

bool = converge o ldDens i ty . getDens i ty $ newHFData
case bool o f

True −> return newHFData
Fal se −> s c f core ( getDens i ty newHFData) i n t e g r a l s

xmatrix ( s tep +1) maxStep

| otherwise = error ”SCF maxium st ep s exceeded ”

Listing 3.12: Self Consistent Field Function

density matrix, the zero matrix is usually used). The evaluation of the integrals
deserves its own discussion, but we are not going to enter in any detail about
the calculation of those integral. This function calculates the X matrix using the
overlap matrix according to equations (17) and (18), but to apply the symmetric
orthogonalization the upper triangular matrix should be reshape to a bidimensional
symmetric matrix using the monadic function called triang2DIM2. Finally, the
function which carries out the recursive part of the SCF procedure is called.

The SCF function is depicted in Listing 12: the function takes as arguments the
core Hamiltonian, the current density matrix, the X matrix, the integer label of
the current step and the maximum number of allowed steps. In the case where we
exceed the maximum number of steps, we want to finish immediately regardless
of the error. If the maximum number of steps is not exceeded, the Fock matrix is
calculated by adding the core Hamiltonian and the G matrix together. This last
matrix is calculated using the old density and the map of integrals.

Now, according to the algorithm, we need to generate a new matrix F’ using
the X matrix and then resolve this to a standard eigenvalue problem obtaining the
energies as eigenvalues and a new matrix of coefficients as eigenvectors. In order to
do so, we have defined a diagonalHF function defined in Listing 13. The newFock
term on this function simply chains together two monadic functions which first
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diagonalHF : : (Monad m, VU. Unbox Double )
=> Array U DIM1 Double
−> Array U DIM2 Double
−> m(HFData)

diagonalHF fock1 xmatrix = do
fDIM2 <−newFock
f ’ <− LA. toTriang fDIM2
eigData <− jacobiP fDIM2
l e t ( c o e f f , orbEs ) = LA. e igenvec &&& LA. e i g e n v a l s $ eigData
newCoeff <− LA. mmultP xmatrix c o e f f
newDensity <− LA. ca l cDens i ty newCoeff
return $ HFData f ’ newCoeff newDensity orbEs 0 .0

where newFock = (LA. un i taryTrans f xmatrix ) <=< LA. triang2DIM2 $
fock1

Listing 3.13: The DiagonalHF Function

take the unidimensional Fock matrix, translates it to its bidimensional form, and
then applies equation (20) to the Fock matrix. This generates a bidimensional Fock
matrix called fDIM2, which is diagonalized using the Jacobi method. The new F’
is reshaped to a unidimensional array to be stored in the record. For retrieving
the eigenvalues and eigenvectors of the resulting algebraic data type EigenData, we
can use the arrow operator (&&&) in conjunction with the two accessor functions.
Finally, we obtain the new matrix of coefficients and the density. Because the total
energy is not calculated in this point, a zero is added to the value constructor.

Once the record containing the Hartree-Fock data has been calculated and com-
ing back to the SCF function, we are in position to calculate the total energy using
(28) and its implementation called the variationalE function, shown in Listing 14.

Finally, using the record syntax, we introduce the total energy and the Fock
matrix before the diagonalization procedure, because it is useful for further cal-
culations. Finally, we check for the convergence criteria. Based on the boolean
returned by the convergence function, we decide if more variations of the coeffi-
cients are necessary of if we are done.

Final Remarks

We are by far not Haskell experts, only new kids in the school. Therefore, all you
feedback is much appreciated; please let us know your opinion about this project,
and we will try to answer your questions as best as we can.

The code began as a challenge and playground for developing a big project in
Haskell. After some months and to our own astonishment, we found that apart
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v a r i a t i o n a l E : : ( Monad m, VU. Unbox Double ) =>
Array U DIM1 Double −>
Array U DIM1 Double −>
Array U DIM2 Double −>
m Double

v a r i a t i o n a l E core fockMtx o ldDens i ty =
( 0 . 5∗ ) ‘ l i f tM ‘ do
sumHF <− (R. computeUnboxedP $

R. zipWith (+) core fockMtx ) >>= \ ar r −>
LA. triang2DIM2 arr

r e s u l t <− LA. mmultP sumHF oldDens i ty
LA. t r r e s u l t

Listing 3.14: The DiagonalHF Function

from performance tuning, we could easily design fairly complex structures with
little effort. Many lessons are still to be learnt, but Haskell’s powerful type system
and the community support with hundreds of libraries are, from our point of view,
what will make scientific software written in Haskell outstanding.

The SCF procedure described in this article is not the most popular method in
the quantum chemistry packages due to convergence problems; instead, a method
called direct inversion in the iterative subspace (DIIS) is used; this method is based
on the SCF described above, and we are working on its implementation.

The set of modules making up the Hartree-Fock method, which will become
a package in a near future, are not true competition to the electronic structure
packages found either in the market or in the academic community [8]; but as far
as we know, it is one of the first ones implemented in a functional language. Unlike
one of the most famous pieces of software in computational quantum chemistry,
we will not ban you from using our code if you compare the performance or the
results of our code with some other package. [9]

It only remains to thank you, dear Haskeller, for following us through these
lands, full of opportunities for applying the high abstraction level of Haskell to the
challenge of simulating the natural phenomena. And remember: Just Fun ... or
Nothing.

BEWARE FortranIANS!!!

Ĥaskell Ψ >>= \E− > Ψ E
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