
EVOLVING PATTERN-SEEKING
ARTIFICIAL LIFE WITH CRÉATÚR

by

Amy de Buitléir

A thesis submied in partial fulfilment of the

requirements for the M.Sc. in

Soware Engineering

Athlone Institute of Tenology

2011

Supervisors: Miael Russell and Mark Daly

Department of Electronics, Computer and

Soware Engineering

Declaration

I hereby certify that this material, whi I now submit for assessment

on the programme of study leading to the award of MSc is entirely

my own work and has not been taken from the work of others save

and to the extent that su work has been cited and anowledged

within the text of my work.

Signed:

Student ID: A00168093

Date:

Contents

Abstract 9

Anowledgements 10

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Document Structure . 17
1.2 Nomenclature . 18

2 Literature Review 20
2.1 Ideas from philosophy . 22

2.1.1 Emergence . 22
2.1.2 e Intentional Stance 24

2.2 Ideas from biology . 26
2.2.1 Evolution by natural selection 26
2.2.2 Sexual reproduction . 28

2.3 Ideas from neuroscience . 30
2.3.1 Neural Darwinism . 30
2.3.2 Pre-wiring the brain . 32

2.4 Ideas from AI . 34
2.4.1 Artificial Neural Networks 35
2.4.2 Kohonen’s Self-organising Map 40

2.5 Ideas from ALife . 42
2.5.1 Tierra . 42
2.5.2 PolyWorld . 44
2.5.3 Creatures . 45
2.5.4 Complexity . 46
2.5.5 Reproduction . 47

3

2.6 Soware Engineering . 48
2.6.1 Paradigm: Functional Programming 49
2.6.2 Programming language: Haskell 51
2.6.3 Property-based testing withiChe 53

2.7 Summary . 54

3 Objectives and Approa 57
3.1 Objectives . 57
3.2 Approa . 58

3.2.1 Combine AI and ALife 58
3.2.2 Use data as the environment 59
3.2.3 Frame data analysis as a survival problem 60
3.2.4 Use multiple kinds of evolution 62
3.2.5 No fitness function except survival 63
3.2.6 No free lun . 64
3.2.7 Protect the young while they learn 64
3.2.8 Use diploid animats . 65
3.2.9 Provide a means for animats to estimate degrees of kinship 65

3.3 Summary . 66

4 Pilot Project 67
4.1 e MNIST database . 68
4.2 e network . 69
4.3 Ba-propagation . 69
4.4 Building a neural network . 70

4.4.1 Building a neuron . 70
4.5 Building a neuron layer . 74

4.5.1 Assembling the network 75
4.6 Running the Network . 77

4.6.1 A closer look at the network structure 77
4.6.2 Propagating through one layer 78
4.6.3 Propagating through the network 81

4.7 Training the network . 82
4.7.1 Ba-propagating through a single layer 83
4.7.2 Ba-propagating through the network 86
4.7.3 Updating the weights . 87

4.8 Testing . 88
4.9 Summary . 91

4

5 Créatúr: an ALife habitat 93
5.1 Features of Créatúr . 94
5.2 Créatúr set-up . 96

5.2.1 Animats . 97
5.2.2 Objects . 99

5.3 A closer look at Créatúr . 99
5.3.1 Object encounters . 99
5.3.2 Animat encounters . 100
5.3.3 Reproduction . 101
5.3.4 Parenting . 102
5.3.5 Créatúr Time . 103

5.4 Implementation and testing . 103
5.5 Summary . 111

6 Dotes: an artificial lifeform 113
6.1 e dotes . 114

6.1.1 Appearance . 114
6.1.2 Eating and metabolism 114
6.1.3 Mating . 115
6.1.4 Child rearing . 116
6.1.5 inking . 116
6.1.6 Learning . 118
6.1.7 Forgeing . 119

6.2 Dote Genetics . 120
6.2.1 Genetic dominance . 120
6.2.2 Dote assembly . 121

6.3 Implementation and testing . 121
6.4 Experimental set-up . 125

6.4.1 Generating a starter population 125
6.4.2 Configuring the Ecosystem 126

6.5 Results and Interpretation . 129
6.5.1 Summary of results from early trials 129
6.5.2 Results from final trial 134

6.6 Summary . 137

7 Wains: an artificial lifeform 139
7.1 e wain . 141

7.1.1 Appearance . 141
7.1.2 Eating and metabolism 142
7.1.3 Mating . 143
7.1.4 Child rearing . 144

5

7.1.5 Play . 144
7.1.6 Brain Structure . 145
7.1.7 Learning paerns . 146
7.1.8 Making decisions . 148
7.1.9 Learning to make beer decisions 149

7.2 Wain Genetics . 150
7.2.1 Genetic dominance . 151
7.2.2 Wain assembly . 151

7.3 Implementation and testing . 151
7.4 Experimental set-up . 157

7.4.1 Generating a starter population 157
7.4.2 Configuring the Ecosystem 157

7.5 Results and Interpretation . 160
7.5.1 Population stability . 160
7.5.2 Eating paerns . 162
7.5.3 Mating paerns . 168
7.5.4 Play paerns . 173
7.5.5 Wain evolution . 174
7.5.6 Mutations . 177
7.5.7 Risk-taking and evolution 182

7.6 Summary . 182

8 Conclusions and observations 184
8.1 Observations . 184

8.1.1 Analysis tools . 185
8.1.2 Strategy for using Créatúr 185

8.2 Conclusions . 188

9 Future Directions 190
9.1 Rier interaction . 190
9.2 More realistic ecology . 191
9.3 Beer brains . 192
9.4 Benmarking . 192
9.5 Improved support for solving real-world problems 193

Glossary 194

Acronyms 204

Bibliography 204

6

A Methodology 219
A.1 Initial resear objectives . 219
A.2 Exploratory literature sear . 220
A.3 Resear question . 220
A.4 Final resear objectives . 220
A.5 Approa . 221
A.6 Focused literature sear . 221
A.7 Requirements . 221
A.8 Pilot project . 221
A.9 Framework . 221
A.10 Evolving a species . 222

B Requirements 223
B.1 User needs . 223
B.2 Requirements . 225

B.2.1 Appearance . 225
B.2.2 Senses . 226
B.2.3 Encounters . 227
B.2.4 Decisions . 227
B.2.5 Learning . 228
B.2.6 Eating . 228
B.2.7 Mating . 229
B.2.8 Reproduction . 229
B.2.9 Birth . 230
B.2.10 Child-rearing . 230
B.2.11 Metabolism . 231
B.2.12 Population . 231
B.2.13 Automation and maintenance 232
B.2.14 Analysis tools . 232

C Dote Genome 236
C.1 Gene encoding . 236

C.1.1 Devotion gene . 237
C.1.2 Maturation time gene . 237
C.1.3 Colour gene . 237
C.1.4 Start neuron gene . 238
C.1.5 End neuron gene . 238
C.1.6 Learning rule gene . 238
C.1.7 Forgeing rule gene . 239
C.1.8 Connection source gene 239
C.1.9 inking time gene . 240

7

C.1.10 No-op gene . 240
C.2 Genetic dominance . 240

D Wain Genome 242
D.1 Gene encoding . 242

D.1.1 Devotion gene . 243
D.1.2 Maturation time gene . 243
D.1.3 Exteroception capacity gene 243
D.1.4 Interoception capacity gene 244
D.1.5 Paern capacity gene . 244
D.1.6 Paern learning rate gene 244
D.1.7 Paern learning rate decay gene 245
D.1.8 Edelman cycle gene . 245
D.1.9 Decider learning rate genes 245
D.1.10 Decider forgeing rate gene 246
D.1.11 Appearance Gene . 246
D.1.12 No-op gene . 246

D.2 Genetic dominance . 247

8

Abstract

is thesis describes a resear project to evolve an Artificial Life (ALife) popu-

lation with sufficient intelligence to discover paerns in data, and to make survival

decisions based on those paerns. As part of this resear, Créatúr, a reusable so-

ware framework for automating experiments with artificial lifeforms, was built.

An ALife species called wains was implemented using diploid reproduction, Heb-

bian learning and Kohonen Self-organising Maps, in combination with novel te-

niques su as using paern-ri data as the environment and framing data anal-

ysis as an ALife survival problem. e data set used was the MNIST database of

handwrien numerals. e first generation of wains mastered the numeral recog-

nition task well enough to thrive. Evolution further adapted the wains to their

environment by making them a lile more pessimistic (lowering the rate at whi

they learn from positive experiences, and raising the the rate at whi they learn

from negative experiences), and also by making their brains more efficient (reduc-

ing the number of paerns remembered, and discarding the least useful paerns

less frequently).

Anowledgements

I would like to thankmy co-supervisor, Miael Russell, for leingme rea for

the stars while keeping me safely tethered to the Earth, and for knowing just how

to bring out the best in me. I would also like to thank my co-supervisor, Dr. Mark

Daly, for mirroring my enthusiasm, thereby assuring me that my ideas had merit;

and for appreciating my comics. Finally, I would like to thank Frank Scaduto for

reviewing this thesis in detail and asking su insightful questions, prompting me

to write with more clarity and conviction.

List of Figures

2.1 Concept map for this thesis . 21
2.2 An artificial neuron. 36
2.3 A simple neural network. 38

4.1 A sample numeral from the MNIST database. 68
4.2 Ba-propagation . 70
4.3 Propagation through the network. 78
4.4 A sematic diagram of the implementation. 87

5.1 Créatúr aritecture . 94

6.1 Gene sequence of starter population 126
6.2 Supervised training of a dote’s brain 131
6.3 Dote eating paerns over time 132
6.4 Dote population as a function of time 133

7.1 Appearance of wains in the initial population. 142
7.2 A sematic diagram of a wain brain. 145
7.3 Samples of different styles of the numeral 2 147
7.4 Wain population growth . 163
7.5 Wain population anges in response to a harsher environment . 164
7.6 First-generation wain eating paerns 165
7.7 Wain eating paerns . 166
7.8 Detailed wain eating paerns . 169
7.9 A typical wain SOM . 170
7.10 Wain flirting paerns . 171
7.11 Wain mating weights . 173
7.12 Wain play paerns . 175
7.13 Evolution of decider component 176
7.14 Evolution of paern capacity . 178
7.15 Evolution of Edelman cycle . 179
7.16 Wain mutations . 180

11

7.17 Inheritance of a mutation. 181
7.18 A mutant-detecting SOM . 182

12

List of Tables

3.1 Basic survival needs viewed as problems of paern recognition
and prediction. 61

3.2 Soware applications viewed as problems of paern recognition
and prediction . 62

5.1 Examples using cutAndSplice . 106
5.2 Examples using cutAndSplice with a zero or negative index . . . 107
5.3 Examples using cutAndSplicewith an index greater than the length

of the input list . 107

6.1 Neurons in the dote brain . 117
6.2 Genes interpreted as instructions for assembling a dote 122
6.3 Set-up for final trial with dotes 135
6.4 Elder dotes . 136

7.1 Key differences between dotes and wains 140
7.2 Genes interpreted as instructions for assembling a wain 152
7.3 Gene sequence for the starter population 158
7.4 Set-up for final wain trial . 160
7.5 Numeral aracteristics for final wain trial 161

B.1 User needs traceability matrix . 225
B.2 Framework requirements traceability matrix 234
B.3 User implementation requirements traceability matrix 235

C.1 Dote genes . 236
C.2 Devotion gene . 237
C.3 Maturation time gene . 237
C.4 Colour gene . 237
C.5 Start neuron gene . 238
C.6 End neuron gene . 238
C.7 Learning rule gene: Oja’s rule . 238
C.8 Learning rule gene: Hebb’s rule 239

13

C.9 Learning rule gene: ”No Learning” 239
C.10 Forgeing rule gene: basic forgeing rule 239
C.11 Forgeing rule gene: ”No Forgeing” 239
C.12 Connection source gene . 240
C.13 inking time gene . 240
C.14 No-op gene . 240
C.15 Relation between alleles and genotype 241
C.16 Expression of learning rule genes 241

D.1 Wain genes . 242
D.2 Devotion gene . 243
D.3 Maturation time gene . 243
D.4 Exteroception capacity gene . 244
D.5 Interoception capacity gene . 244
D.6 Paern capacity gene . 244
D.7 Paern learning rate gene . 245
D.8 Paern learning rate decay gene 245
D.9 Paern learning rate gene . 245
D.10 Positive decider learning rate gene 246
D.11 Negative decider learning rate gene 246
D.12 Decider forgeing rate gene . 246
D.13 Appearance Gene . 246
D.14 No-op gene . 247
D.15 Relation between alleles and genotype 248

14

Chapter 1

Introduction

Our understanding of the universe will

be severely limited until we have a

more definitive view of how mu life

and consciousness can be explained as

emergent phenomena.

John Holland

is thesis describes a resear project called Créatúr.¹ e idea for this project

came when three ance encounters rekindled my long-term interest in Artificial

Intelligence (AI), the creation of computer models of intelligence;² Artificial Life

(ALife), the creation of computer models of biological lifeforms;³ emergence,⁴ the

phenomenon by whi simple rules give rise to complex behaviour; and the ques-

tion of how a mind arises from a brain.

¹Créatúr, whi is pronounced /cɾʲeːt ̪ɣ uːɾˠ/ [KRAY-toor], is an Irish word for an animal, or an
unfortunate person.

²e term “artificial intelligence” was first used by John McCarthy in 1955 [1].
³e term “artificial life” was first used by Chris Langton in 1986 [2].
⁴e term “emergent” was first used by the psyologist G. H. Lewes [3].

15

e first encounter was with PolyWorld, an ALife platform whi has given

rise to biologically realistic behaviours su as predator-prey population cycles. In

many ALife systems, the animats⁵ (artificial animals) do not have anything resem-

bling a brain; their behaviour is genetically hard-wired. In PolyWorld, however,

ea animat has a brain in the form of a neural network, the structure of whi is

genetic, and shaped by natural selection. So while ALife has tended to ignore the

mind, and AI has tended to ignore the body, PolyWorld models both. I speculated

that this way of bringing elements of AI into ALife, of modelling a brain not as a

standalone system for making decisions, but in a context where it is responsible

for a animat’s survival, could produce more intelligent animats.

e second encounter was with the theory of Neural Darwinism, whi pro-

poses that some form of evolution by natural selection takes place in the brain. In

biology, natural selection provides a step-by-step explanation of not only how life

arose from emicals in the first place, but how complex organs su as the eye

can occur⁶, and also how the ri and endlessly varying forms of life on this planet

came to be. I found the idea that natural selection could similarly explain how a

mind emerges from a brain, deeply appealing.

e third encounter was with the Self-organising Map (SOM), a type of neural

network whi builds a simplified model of the data it receives, and can discover

paerns even when the relationships between the input data and the output data

are very complex. It seemed to me that SOMs could be a useful component in

modelling a brain.

⁵e term “animat” was coined by Stewart W. Wilson in 1991 [4].
⁶Charles Darwin readily admied the difficulty of explaining how “organs of extreme perfection

and complication” [5, pp. 143-146] su as the eye could evolve, though he did outline a possible
solution. Riard Dawkins [6, ap. 5] has a very clear explanation of how eyes evolved not once,
but many times, in various parts of the animal kingdom.

16

e aim of my resear was to explore how these ideas could be used to build

a system that would discover paerns in the environment, and make predictions

based on those paerns.

1.1 Document Structure

e structure of this document is outlined below.

Chapter 2: Literature Review establishes the theoretical basis for the Créatúr re-

sear project.

Chapter 3: Objectives and Approa describes the objectives and the guiding

principles of the Créatúr project, and ends by placing it in the context of

a somewhat similar project, PolyWorld.

Chapter 4: Pilot Project: Numeral Recognition with Ba-propagation describes

a pilot project to gain familiarity with the some of the tenologies and tools

considered for use in Créatúr, and to assess their suitability. e pilot project

implemented a neural network whi used ba-propagation to recognise

handwrien numerals.

Chapter 5: Créatúr: an ALife habitat describes Créatúr, a reusable soware frame-

work for automating experiments with artificial lifeforms.

Chapter 6: Dotes: an artificial lifeform describes the first of two experiments

performed using the Créatúr habitat. e animats used in this experiment

are called dotes.

17

Chapter 7: Wains: an artificial lifeform describes the second of two experiments

performed using the Créatúr habitat. e animats used in this experiment

are called wains.

Chapter 8: Conclusions and observations presents some conclusions about the

Créatúr resear project, and some observations that may be helpful to oth-

ers beginning an ALife resear project.

Chapter 9: Future Directions proposes future directions for resear continuing

on from, or inspired by, the Créatúr project.

A Glossary (whi includes the symbols used in equations in this document), list

of Acronyms, and Bibliography are provided.

Appendix A: Methodology discusses the methodology used in the Créatúr re-

sear project.

Appendix B: Requirements defines the requirements for the artificial life so-

ware at the core of this resear project.

Appendix C: Dote Genome describes the encoding seme for the dote genome.

Appendix D: Wain Genome describes the encoding seme for thewain genome.

1.2 Nomenclature

In this thesis, the wordCréatúr can refer to either a) the Créatúr habitat, a soware

framework for running ALife experiments, or b) the resear project described in

this document, for whi the Créatúr framework was built. It should be clear from

the context whi meaning is intended.

18

Creatures (in italics and without diacritical marks) refers to the ALife game

created by Steve Grand.

e word neuron is used to refer to either a biological neuron or an artificial

neuron.

19

Chapter 2

Literature Review

e ALife-AI claim is, “e dumbest

smart thing you can do is stay alive.”

at is, ALife represents a lower bound

for AI.

Riard K. Belew

is apter establishes the theoretical basis for the Créatúr resear project.

Next, tools and methods from Soware Engineering are discussed whi, although

they did not influence the nature of the Créatúr project, did influence the imple-

mentation. Finally, the main ideas whi influence Créatúr are summarised.

is project incorporates concepts from fields as diverse as philosophy, biology,

neuroscience, AI and ALife. Figure 2.1 shows how these concepts interrelate; the

reader may find it helpful to refer ba to this diagram occasionally.

20

Figure 2.1: Concept map for this thesis. e diagram does not include all of the
concepts discussed, only the key concepts and relationships.

21

2.1 Ideas from philosophy

Cognitive science is an interdisciplinary study concernedwith the nature of thought

[7]. It emerged as a field of study in the 1950s, and philosophy (together with psy-

ology, linguistics, neuroscience, computer science, and anthropology) has been

an ingredient of cognitive science since its inception [8]. Although the involve-

ment of philosophy has lessened somewhat in recent years [9], “philosophy has

continued to serve as a source of interesting ideas that have engaged the field” [10].

Two philosophical concepts whi the Créatúr project draws from, emergence and

the intentional stance, are discussed below.

2.1.1 Emergence

Ant colonies and traffic jams. Flos of birds and swarms of locusts. Tornadoes

and the Internet. ese are examples of emergence: a phenomenon where the

“whole is greater than the sum of its parts” [11, Book VIII, part 6], where indi-

vidual components behaving according to simple rules give rise to complexity at

a higher level. e science writer Steven Johnson called it “the movement from

low-level rules to higher-level sophistication” [12]. Perhaps more memorably, the

philosopher David Chalmers described it as the phenomenon where “something

stupid buys you something smart” [13].

But the very idea of emergence seems to defy logic. In the words of John

Holland, who pioneered the field of genetic algorithms, “How can the interactions

of agents produce an aggregate entity that is more flexible and adaptive than its

component agents?” [14, p. 248] While anowledging that examples of emergence

are abundant, the philosopher Mark Bedau felt there was a contradiction in the

22

very concept. To highlight the problem, he defined two ief aracteristics of

emergent phenomena [15].

1. Emergent phenomena are somehow constituted by, and generated from, un-

derlying processes.

2. Emergent phenomena are somehow autonomous from underlying processes.

In an aempt to explain the contradiction, Bedau distinguished between two

types of emergence, weak and strong. Weakly emergent phenomena can be de-

rived from the underlying processes, but only by simulation, whereas strongly

emergent phenomena cannot be derived at all. Weak emergence sounds similar

to a aotic system, i.e., a system whose behaviour can be predicted in principle,

but whi is so sensitive to initial conditions that it is, for all practical purposes,

unpredictable. However, while aos can underlie an emergent system, Bedau felt

that all complex systems were weakly emergent, whether aotic or not. As for

strong emergence, Bedau granted the logical possibility and did not rule out its

existence, but he found it “uncomfortably like magic”.¹ ²

¹Bedau also identified a form of emergence that is weaker than weak emergence, whi he
termed nominal emergence is phenomenon occurs when a property can exist at a macro level
but not a micro level. For example, water is fluid and transparent, but the constituent molecules
cannot be said to have these properties [16].

²Slightly different definitions for weak and strong emergence were given by Chalmers:

We can say that a high-level phenomenon is strongly emergentwith respect to a low-
level domain when the high-level phenomenon arises from the low-level domain,
but truths concerning that phenomenon are not deducible even in principle from
truths in the low-level domain.

We can say that a high-level phenomenon is weakly emergent with respect to a
low-level domain when the high-level phenomenon arises from the low-level do-
main, but truths concerning that phenomenon are unexpected given the principles
governing the low-level domain [17].

In this formulation, weak emergence is reminiscent of the philosophy of reductionism, whi
claims that a system can be understood by dividing it into components and studying their prop-

23

e Créatúr project involves ALife, and to a limited extent, AI. Why discuss

emergence at all? One reason is that biology is full of examples of emergence,

and any ALife system worthy of the name should demonstrate some emergent

behaviour. In trying to aieve this quality, we naturally look to the sources of

emergence in nature, and try to incorporate those meanisms. But perhaps the

most compelling reason that a discussion of ALife oen includes some mention of

emergence is given by Bedau.

e aggregate global behaviour of the complex systems studied in AL-

ife offers a new way to view emergence… us ALife will play an ac-

tive role in future philosophical debates about emergence and related

notions su as explanation, reduction, complexity and hierary [18].

As shown in Figure 2.1, the concept of emergence (at least in its weaker form),

is a recurring theme in this thesis.³

2.1.2 e Intentional Stance

e fundamental way to predict the behaviour of an object (whether alive or not)

is to use what the philosopher and cognitive scientist Daniel Denne calls the

physical stance [20, p. 15f] [21]: use whatever is known about the laws of physics

and constitution of the object. If we drop an object, whether it is a ro, an alarm

clo, or a goldfish, we can predict its trajectory based on physics.

However, the physical stance is not as useful for predicting some behaviours of

objects. A faster (but riskier) way to make predictions is to use the design stance

erties. In contrast, strong emergence is reminiscent of the philosophy of holism, whi focuses on
the study of complex systems as a whole entity.

³An excellent guide to the history of emergence theory can be found found in Clayton and
Davies [19].

24

[20, p. 16f] [21]: if an object is designed, it will operate according to that design.

For example, if the buons and dials of an alarm clo are manipulated in the

correct way, the alarm will ring some time later. We do not need to take the clo

apart and examine its physical properties in detail in order to make this prediction.

However, in using the design stance, we assume that the entity is designed, and

that it is not malfunctioning.

For some types of objects, we can use an even faster method of making pre-

dictions. e intentional stance [20, p. 17f] [21] treats the object as an agent with

beliefs and desires, and assumes that the object will act in accordance with those

beliefs and desires. Denne gives the example of a ess program: the easiest way

to predict what it will do is not to analyse the source code, but to think of the pro-

gram as a “rational” agent that “wants” to win, and “knows” the rules of ess. We

can then assume that it will behave rationally, and take the action that it “believes”

will lead to victory.

e intentional stance is su a powerful generator of predictions that we use

it regularly, and would find it difficult to give it up. We say that a car is “trying” to

start on a cold morning, and that a program “knows” the value of x when it gets

to a particular line of code. Dawkins used the intentional stance when he wrote

e Selfish Gene [22]. is stance offers both risk and benefit:

[e intentional stance] must be used with caution; we must walk

a tightrope between vacuous metaphor on the one hand and literal

falsehood on the other… Properly understood, it can provide a sound

and fruitful perspective… directing our aention to the crucial exper-

iments that need to be conducted. [23, p. 36]

25

Because it is so concise (and avoids the necessity of sprinkling “scare quotes” on

every page), the intentional stance is used in this thesis to describe the behaviour

of the animats.

2.2 Ideas from biology

As the focus of this resear is to build a flexible system that can recognise paerns

and make predictions, the best source for guidance on how to approa this task is

Nature itself. Biological life is ri with examples of emergence, and with organ-

isms that regularly solve problems in complex environments and whi have the

ability to adapt – both in an evolutionary sense and during the lifetime of the in-

dividual – to a anging environment. Two ideas from biology whi have guided

the Créatúr resear project, evolution by natural selection, and sexual reproduc-

tion, are discussed below.

2.2.1 Evolution by natural selection

Charles Darwin wrote On the Origin of Species [24] with two goals in mind: to

prove that species evolve, and to explain the meanism by whi it happens –

descent with modification (whi we now call “natural selection”). Both ideas met

with initial resistance, but evolution was accepted first; descent with modifica-

tion did not begin to gain widespread acceptance until the 1930s. e first key

step toward acceptance was the rediscovery, at the turn of the 20th century, of

Gregor Mendel’s formulation of the laws of inheritance based on his experiments

26

with pea plants [25, p. 270].⁴ Another was when the biologist and statistician R.A.

Fisher showed that groups of discrete genes could collectively produce the kind of

continuous variation seen in nature, and that natural selection could ange the

frequency of genes in a population over time [27].

e recipe for evolution is a simple one. It requires the following conditions

[28]:

1. variation: a continuing abundance of different elements,

2. heredity or replication: the capacity to create copies of elements, and

3. differential fitness: the number of copies created depends on the interaction

between the features of an element with features of the environment.

From these simple conditions, all the complexity and variation of biological

life arises; clearly this is an emergent phenomenon. And yet, “the only thing that

anges in evolution is the genes” [29]. Dawkins describes genes as “Duplicate

Me” programs, and explains this outlook with a delightful use of the intentional

stance:

Elephant genes say: ’Elephant cells, work together to make a new

elephant, whi must be programmed in its turn to grow and make

more elephants, all programmed to duplicate me.’ [6, p. 271]

Mutation, and the shuffling of genetic material that occurs in sexual repro-

duction, makes it possible for a species to adapt to anges in the environment,

⁴Mendel was a contemporary of Darwin, and had readOn the Origin of Species and agreed with
mu of it. However, Mendel did not believe that the traits of the parents are blended to produce
offspring. Darwin was apparently unaware of Mendel’s work [26, p. 23].

27

provided those anges aren’t too rapid. If we view an individual’s genome as a

solution to the problem of scarcity of resources, and a species as a class of solutions

that are partially optimised to a particular ecological nie, then evolution is seen

as a process for finding solutions. Although the process of evolution is normally

associated with biological organisms, it can occur with any substrate as long as

those three conditions are met. It has been argued that other forms of evolution

occur in nature. One example is Neural Darwinism, whi will be discussed be-

low. Another example, somewhat controversial, is the idea that memes, cultural

units of transmission or imitation, undergo a type of evolution [22, p. 192].

Evolution seems to be a promising approa to developing a complex and adap-

tive system from simple parts. e Créatúr project made use of evolution by mak-

ing certain aspects of the design of the animat species, particularly those aspects

concerned with thinking and decision making, genetically determined. is al-

lowed evolution to improve on the initial design of the animats.

2.2.2 Sexual reproduction

From an evolutionary perspective, sex has a number of disadvantages. It requires

a meanism of “arbitration” when the organism inherits different alleles, or forms

of a particular gene, from ea parent. Only half of the population can produce

eggs. Organisms must invest time and energy in finding mates, they must produce

special sex cells, and they can only pass along half of their genes to their offspring.

Why did sexual reproduction develop, and why does it persist? Bell called this the

“queen of problems in evolutionary biology” [30, p. 19].

Many theories have been proposed to explain how sexual reproduction might

28

be adaptive; a few examples are mentioned below.⁵

• Repair of romosome damage may be easier when there is a second ro-

mosome of the same kind [32–34].

• In asexual reproduction, the genome is copied as a blo. erefore, once

all the individuals in a population carry at least one deleterious mutation,

so will all future generations (except in the unlikely event that a future mu-

tation reverses an existing mutation). Over time, the individuals with the

fewest deleterious mutations are lost and the population accumulates more

deleterious mutations (“Muller’s ratet”). In populations that reproduce

sexually, however, it is possible for offspring to have fewer mutations than

their parents, and offspring that end up with more mutations than their par-

ents are likely to be eliminated. In this way, sexual reproduction may help

to remove deleterious mutations from the gene pool [35].

• Sex may provide protection against parasites as the host evolves new de-

fences. is is called the Redeen hypothesis because “it takes all the run-

ning you can do to keep in the same place” on the part of host and parasite

as they race to keep up with ea other’s adaptations [36, 37].

ese theories suggest that organisms gain primarily from being diploid (hav-

ing two sets of romosomes in ea cell), rather than from having multiple sexes.

In fact, not everyone agrees that sexual reproduction is adaptive. It may be that

Our sexuality does not derive directly from only benefit, in other

words, because most, if not all, sexually reproducing animals have

⁵Meirmans and Strand strand provide a good summary [31].

29

no exit, no way to opt out of the ancient cycle of meeting, mating,

and cell growth to make our bodies [38, p. 112].

In an effort to gain the potential benefits of sexual reproduction, while avoiding

the disadvantages, the animats developed for the Créatúr project are diploid, and

reproduce sexually (i.e. ea parent contributes a set of romosomes), but they

have only one sex. Using diploid reproduction was a key element of the approa

used in this project, as will be discussed in Section 3.2.8.

2.3 Ideas from neuroscience

When trying to build a system that can recognise paerns and make predictions,

the obvious course of action is to model it aer existing systems that have this

ability. A good model is found in brains of creatures that can evaluate possible

actions and make oices based on that evaluation. ese creatures don’t merely

learn through trial-and-error; they have the ability to filter out some bad oices,

and make beer-than-ance guesses about what to do next. Denne calls them

Popperian creatures, aer the philosopher Sir Karl Popper who said that this ability

lets “our theories die in our stead” [23, p. 116] [39, p. 244]. is ability is found in

mammals, birds, fish, cephalopods, some reptiles, and possibly other creatures as

well. Popperian creatures are the subject of neuroscience;

2.3.1 Neural Darwinism

Evolution by natural selection is a simple process that can create highly sophisti-

cated designs. e human brain is undoubtedly a result of evolution, but our genes

30

are an incomplete blueprint for this vital organ. ey specify the components of

the brain, but do not provide a detailed wiring diagram. Instead, the brain has to

quily wire itself into a mind during infancy. is process of wiring and rewiring,

or neural plasticity, takes place throughout our lives [40].

But how does the brain organise itself? It may be that another type of natural

selection occurs within the brain, forming new connections between neurons, and

pruning connections that are found to be undesirable. Gerald Edelman [41] pro-

posed the theory of Neural Darwinism: Neurons in the cerebral cortex form into

clusters called groups. Within ea group, there is a paern of firing where one

neuron in the centre is amplified, and the surrounding neurons are suppressed, so

there is a kind of competition or differential fitness, satisfying the third condition

for evolution (as discussed in Section 2.2.1). ere is also variation in these groups,

so the first condition is satisfied.

Critics of the theory of Neural Darwinism, including Francis Cri [42], pointed

to the absence of replication (the second condition for evolution) in the process.

To appreciate why replication is important, it is necessary to understand what

happens if an evolutionary process has discovered a good solution, and is now ex-

perimenting with variants of that solution. If the original solution is modified to

produce a variant, it may turn out to be non-adaptive and get culled. Replication,

on the other hand, leaves the original solution intact, so we do not risk losing it

if the variations turn out to be less viable. However, Chrisantha Fernando [43]

has since proposed meanisms by whi a type of replication might occur in the

brain. If evolution does occur in the brain, it would help to explain how a mind

emerges from a disorganised tangle of neurons.

A type of evolution was incorporated into the brains of the animats developed

31

for the Créatúr project. is was a key element of the approa used in this project,

as will be discussed in Section 3.2.4.

2.3.2 Pre-wiring the brain

In an effort to learn how thoughts are represented spatially in the brain, a team of

researers led by Mitell and Just [44, 45] conducted a series of experiments to

explore how cognitive states are represented spatially in the brain. ey presented

a stimulus to volunteers for approximately 3 seconds, and asked them to think

about it. e stimulus consisted either of a word su as “bole”, or a simple

image su as a drawing of a bole. All the words and images were of concrete

nouns. e subjects were observed using functional Magnetic Resonance Imaging

(fMRI). e researers were able to train a variety of classifiers (maine learning

programs) to examine an fMRI scan and identify the stimulus that caused that

scan. When they trained the classifier on fMRI scans from one group of people, and

used it to examine scans from a different group, it could identify the stimulus with

statistically significant accuracy. ey then trained a classifier on fMRI scans from

people viewing words, and used it to decode scans from people viewing images,

also with accurate results. is suggests that the classifiers were capturing neural

activity about the meaning of the stimulus, not just the appearance of the object

or wrien word. ey also trained a classifier on fMRI scans from bilingual people

viewingwords in English, and use it to decode scans from the same group of people

viewing words in Portuguese, again with accurate results, giving further support

to the idea that the spatial representation in the brain was related to the meaning

of the stimulus rather than the word used.

32

e next step was to build a model that could predict neural activity for new

words, words that the classifier hadn’t trained on. e researers trained a classi-

fier to recognise a set of 25 verbs, osen to cover a range of sensorimotor activity.

ey then examined Google’s trillion-word text corpus to discover whi verbs co-

occur with a pre-selected set of concrete nouns. For example, the verbs “eat” and

“taste” oen co-occur with the noun “celery”, while the verbs “drive” and “wear”

do not. ey then trained the classifier to predict neural activity in response to a

noun, as the linear sum of activity in response to verbs, weighted according the

the probability of that verb co-occurring with the noun. For example:

predicted activitycelery = 0.84 ∗ activityeat + 0.35 ∗ activitytaste + . . .

Once the classifier was trained on fMRI scans from one set of nouns, it was

given two scans for nouns it had never been trained on. It was able to predict, with

statistically significant accuracy, whi noun was the stimulus for whi scan.

All of this resear seems to suggest that brains have similar wiring, at least

in how they represent concrete nouns and images. But how can this similarity

be explained? Perhaps the fact that people have many learning experiences in

common, and many of the early learning experiences occur at the same stage of

development, leads to similar representations in the brain. Or perhaps we inherit

some “pre-wiring”. If pre-wiring is beneficial to biological life, it might also be

beneficial to ALife. In order to evaluate the benefit to ALife, a type of genetically

controlled neural pre-wiring was used in dotes, one of the animat species devel-

oped for the Créatúr project. (It was not used in wains, the other species, due to

sedule constraints, however it could easily be incorporated.)

33

2.4 Ideas from AI

AI has been defined as “the scientific understanding of the meanisms underly-

ing thought and intelligent behaviour and their embodiment in maines” [46].

e most ambitious AI projects aempt to create a program or maine that ex-

hibits the sort of intelligent behaviour found in Denne’s Popperian creatures.

ough the interest in “thinking maines” can be traced ba to ancient Greece,

themathematician Alan Turing is generally viewed as the founder ofmodernAI. In

a thought experiment, Turing described a simple maine supplied with an infinite

stream of tape, capable of reading and writing the symbols ’0’ and ’1’ and mov-

ing the tape baward and forward. Supplied with a simple “table of behaviour”

telling it whi action to take, su a maine could perform any mathematical

calculation [47, p. 96-107]. Just as Natural Selection shows “the continuity be-

tween lifeless maer on the one hand and living things and all their activities and

products on the other”, Turing “foresaw that there was a traversable path from

Absolute Ignorance to Artificial Intelligence, a long series of liing steps in that

Design Space” [48].

A good definition of intelligence has not been established,⁶ however, so AI

researers were aiming at a moving target. Programs exist whi play ess,

compose music, and develop mathematical proofs, yet none of them seem to cap-

ture the essence of intelligence. In the words of the cognitive scientist Douglas

⁶Turing defined a test of maine intelligence [49], in whi a human judge converses through
a text-only interface with a human and a maine. All participants are in separate rooms. If
the judge cannot reliably tell the human from the maine, then the maine has passed the test.
is “Turing Test”, as it is called, is perhaps the best criterion for maine intelligence available.
However, it is not viewed as infallible. Humans are not reliable judges; we sometimes aribute
intelligence where it does not exist, and overlook intelligence where it does exist. For example,
“atbots”, whi are extremely simple programs designed to add human-like comments to on-line
conversations, regularly fool people.

34

Hofstadter,

e ineluctable core of intelligence is always in that next thing whi

hasn’t yet been programmed. is “eorem”was first proposed tome

by Larry Tesler, so I call it Tesler’s eorem: “AI is whatever hasn’t

been done yet” [50, p. 601].

Nonetheless, AI has produced interesting and practical teniques for solving

problems and modelling certain aspects of intelligence. Two ideas from AI whi

have guided the Créatúr resear project, Artificial Neural Networks (ANNs) and

Self-organising Maps (SOMs), are discussed below. Using teniques from AI was

a key element of the approa used in this project, as will be discussed in Section

3.2.1.

2.4.1 Artificial Neural Networks

An ANN is a computational system, inspired by neuroscience and loosely mod-

elled on biological neurons, that can be used to identify paerns in data, to model

relationships between inputs and outputs, and to make predictions based on its

input.

Artificial neurons

Conceptually, the basic building blo of an ANN is the neuron, shown in Figure

2.2. It is aracterised by [51, pp. 13-16, 25-28]

• a set of inputs xi, usually more than one

• a set of weights wi associated with ea input

35

• e weighted sum of the inputs a = Σxiwi

• an activation function f(a) whi acts on the weighted sum of the inputs,

and determines the output, and

• a single output y = f(a)

Figure 2.2: An artificial neuron.

Oen the input and output signals for artificial neurons are restricted to the bi-

nary values 0 and 1. However, other encoding semes are also used. For example,

the signals might be analogue, represented by a continuous stream aracterised

by a pulse frequency [51, p. 18f].

Hebbian learning

In 1949, the psyologist Donald Hebb postulated a method by whi biological

brains might form associations.

When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic

36

ange takes place in one or both cells su that A’s efficiency, as one

of the cells firing B, is increased [52, p. 62].

is is oen summarised as “cells that fire together, wire together”. Today the term

Hebbian learning can refer to any one of a number of mathematical models that

implement this type of behaviour. e simplest of these is known as Hebb’s Rule,

and is given by Equation 2.1,

w′
i = wi + ηxiy (2.1)

where wi is the current value of the ith weight and w′
i is the updated value, η is

the learning rate, xi is the ith input, and y is the output. is equation is unstable;

if one of the input signals xi is dominant, then the weight will increase without

bound.

e computer scientist Erkki Oja [53] modified Hebb’s Rule to solve the sta-

bility problem. Oja’s Rule is given by Equation 2.2; the symbols have the same

meaning as for Hebb’s Rule.

w′
i = wi + ηy(xi − wiy) (2.2)

Both Hebb’s Rule and Oja’s Rule are local learning rules; they depend only on

the neuron’s current state and its inputs. Many other learning rules, both local

and non-local, have been used in ANNs. One tenique for training ANNs, ba-

propagation, uses a non-local learning rule. Ba-propagation will be discussed

below and in Chapter 4. First, however, it is necessary to consider how artificial

neurons are organised into an ANN.

37

Feed-forward networks

e most common type of ANN aritecture is the feed-forward network. In a

feed-forward network, the neurons are grouped into layers, as shown in Figure

2.3. Ea neuron feeds its output forward to every neuron in the following layer.

ere is no feedba from a later layer to an earlier one, and no connections within

a layer, so there are no loops. e elements of the input paern to be analysed are

presented to a sensor layer, whi has one neuron for every component of the

input. e sensor layer performs no processing; it merely distributes its input to

the next layer. Aer the sensor layer there are one or more hidden layers; the

number of neurons in these layers is arbitrary. e purpose of a hidden layer is

to reduce the dimensionality of the data from the previous layer, so that the next

layer has a simpler model to learn.⁷. e last layer is the output layer ; the outputs

from these neurons form the elements of the output paern. Hence the number of

neurons in the output layer must mat the desired length of the output paern.

Figure 2.3: A simple neural network.

⁷e hidden layer models its input as a linear combination of the activation function e ac-
tivation functions used in artificial neurons are usually universal basis functions su as tanh, so
given enough neurons, the hidden layer can model the inputs to any degree of accuracy required.

38

Training the ANN

e error is a function of the vector difference between the output paern and

the target paern (desired output). e network can be trained by adjusting the

network weights with the goal of reducing the error; there are many teniques

for doing this.

Methods for training an ANN can be categorised according to whether they use

supervised training or unsupervised training. In supervised training, the desired

response (target paern) for ea input vector in the training set must be known

in advance or be calculable. During the training phase, the ANN has access to the

target values (usually aer it has responded to the input vector), whi allows it

to calculate the error and make weight corrections intended to reduce the error in

future. Aer training is completed, a separate data set is used to test the ANN.

During testing, the ANN is not provided with the target values.

One example of a supervised training tenique is ba-propagation [54], whi

can be used with feed-forward networks. In ba-propagation, aer an input pat-

tern is propagated forward through the network to produce an output paern,

During the ba-propagation phase, ea neuron’s contribution to the error is cal-

culated, and the network configuration can be modified with the goal of reducing

future errors. is tenique is described in more detail in Chapter 4.

In unsupervised training, the desired response is not known, and there may or

may not be a way to estimate errors. An ANN that uses unsupervised training is

most useful for analysing data and finding other ways to represent it (e.g., by com-

pressing it, reducing the dimensionality, or categorising it). One example of a net-

work that uses unsupervised training is the SOM. A SOM is in many ways similar

39

to an ANN, and is sometimes classed as one, but because it has some unique ar-

acteristics, it is discussed separately, in Section 2.4.2. Because Hebbian learning

has biological plausibility, and can be used with or without supervised training, it

was incorporated into the brains of the animats developed for the Créatúr project.

2.4.2 Kohonen’s Self-organising Map

In 1982, Teuvo Kohonen proposed a computational method for analysing high-

dimensional data [55, 56]. A Kohonen SOM maps the input vectors onto a regular

grid (usually two-dimensional) where ea node in the grid has a weight vector

representing a model of the input data. (e components in a SOM are usually

referred to as nodes rather than neurons.) Kohonen’s tenique ensures that any

topological relationships within the input data are also represented in the grid. e

training of the grid is unsupervised, no target paern is required. Some features

that distinguish a SOM frommore typical ANNs include: the activation function is

the identity function, only one output node is active at a time, there is competition

between nodes to represent the input paern, and the network itself becomes a

map whi preserves the topology of the input data.

e algorithm for implementing a SOM is straightforward. For ea input

vector (input paern) presented, the following steps are performed.

1. A winning node is selected. e node osen is the one that is most similar

(in some sense) to the input vector. Typically it is the node with the smallest

Euclidean distance⁸ between its weight vector and the input vector that is

⁸In Cartesian coordinates, if p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn), the Euclidean dis-

tance is given by

√
n∑

i=1

(qi − pi)2

40

selected as the winning node.

2. e weight vector of the winning node is adjusted to make it slightly more

similar to the input vector.

3. e weight vectors of all nodes within a given radius of the winning node

are also adjusted, by an amount whi is smaller the further the node is from

the winning node.

As more and more inputs are received, nodes that are physically close end up

responding to similar paerns in the input data; this preserves its topology. e

update performed in steps 2 and 3 takes the general form shown in Equation 2.3,

w′
i = wi + ηf(i, k)(x−wi) (2.3)

where x is the input vector, k is the index of the winning node, i is the index of the

node being updated,wi is the current value of the weight vector,w′
i is the updated

value, η is the learning rate, and f(i, k) is the neighbourhood function, whi has

value 1 when i = k and falls off with the distance between the nodes i and k. e

neighbourhood function is oen an exponential function.

Because SOMs do not require supervised training, and are well-suited to find-

ing paerns in data, a simplified SOM was incorporated into the brains of wains,

one of the animat species developed for the Créatúr project.

41

2.5 Ideas from ALife

ALife is a field whi aempts to create life-like behaviour using soware, hard-

ware, bioemistry or other media. e computer scientist Christopher Langton,

who is considered one of the founders of the field, described it as broadening the

scope of biology, whi in practise is restricted to the study of carbon-based life

(owing to the la of any other kind being available for study). By studying “life-

as-it-could-be” in addition to “life-as-we-know-it”, Langton suggested, we could

isolate the essential properties of life. [57]

Although Créatúr uses ideas frommany areas of study, it is implemented as an

ALife project. Inspiration for the project was drawn from two prior ALife projects:

PolyWorld and Creatures. ese projects, along with the drive for complexity in

ALife, and options for reproduction, are discussed below. First, however, we will

look at a program that established a “gold standard” for ALife. at program is

Tierra.

2.5.1 Tierra

As an undergraduate, Tom Ray [58] studied ants in the Costa Rican rain forest.

He became fascinated with the complex relationships between army ants and the

birds, buerflies and other insects that follow the colony on raids. He continued

on to complete a master’s and doctorate at Harvard, where he became frustrated

with the inability of ecology to explain the types of interdependent relationships he

had witnessed in the army ants [59]. To explore these relationships, Ray decided

to create synthetic life in a computer. His goal in developing Tierra was to “to

synthesise rather than simulate life”; e inhabitants of Tierra are self-replicating

42

programs whi evolve by natural selection. In most ALife systems of the time,

ea individual had a genome with a set of pre-defined genes and allelic forms, and

survived (or not) according to a fitness function designed by the developer. Ray

saw this as a limitation; hewanted a system that permied “open-ended evolution”.

e inhabitants of Tierra run in a virtual maine whi has been ported to many

operating systems, including Linux (x86 and 64 bit Alpha), many Unix platforms,

and Windows 2000.

Tierra developed a diverse ecology. e instruction set included jump com-

mands, whi directed the processor to another memory location, thereby sup-

porting loops. One mutation caused programs to incorrectly report their size to

the operating system; allowing them to execute part of another animat’s code.

ese ”parasites“ could only replicate in the presence of the longer ”host“. Sub-

sequently, another mutation granted some programs a degree of ”immunity” to

these parasites; their code permits the parasites to replicate a few times, but even-

tually eliminates them. Yet another mutation allowed the parasites to bypass this

immunity. Eventually this “arms race” led to the development of hyper-parasites

and hyper-hyper-parasites. Perhaps more surprisingly, “social hyper-parasites”

developed, whi share code to their mutual benefit.

emacro-evolutionary paerns found in longer runs included periods of slow

evolutionary ange, punctuated by periods of rapid ange. Ray describes this as

a parallel to the theory of punctuated equilibrium, as proposed by paleontologists

Niles Eldredge and Stephen Jay Gould [60]. Another naturalistic feature in Tierra

is the “Lotka-Volterra” cycle, a paern found in predator and prey populations [61].

With complex behaviours su as these, Tierra, showed that ALife systems could

realistically model biological life.

43

It seems unlikely that Tierra would have aieved this mu diversity if a fit-

ness function had been used. For this reason, no fitness function other than sur-

vival itself was used in the Créatúr project. is was a key element of the approa

used in this project, as will be discussed in Section 3.2.5.

2.5.2 PolyWorld

PolyWorld [62–66] is a cross-platform (Linux, MacOSX) programwrien by Larry

Yaeger to explore issues in ALife. Simulated organisms reproduce, and survive by

finding and eating food in the environment, or by fighting, killing and eating ea

other. Polyworldians are haploid; they only have one set of genetic material. An

organism’s behaviour is controlled by its “brain”, whi is an ANN using Hebbian

learning. e ANN is neither empty or random at birth, it inherits some initial

wiring from its parents. Like Tierra, PolyWorld has no fitness function. Some

interesting behaviours have been observed aer prolonged evolution, including

predator-prey population cycles that mimic those in nature, and mimicry.

Researerswhoworked on PolyWorld quily discovered that ”evolution loves

to eat” [64]. For example, one group of animats (dubbed the “indolent canni-

bals”) found a bizarre solution to the problem of obtaining food. ey would re-

main in tight clusters, rarely moving from their birthplace. ey would mate, eat

the offspring [64], fight with ea other, and eat the casualties [62]. is behaviour

was dramatically reduced by imposing an energy cost for having offspring, and by

eliminating the food source that remained aer an animat died. For this reason,

everything that the animats in the Créatúr project do, even just being alive, has

an associated energy cost. is was a key element of the approa used in this

44

project, as will be discussed in Section 3.2.6.

In PolyWorld, the colour of an animat is an RGB triplet. e red component

indicates how aggressive the animat currently is, and the blue indicates how badly

it wants to mate. e green component is genetically determined; this was imple-

mented to support kin selection. Some tribalism has been observed in PolyWorld,

but “usually you have to tri it” [64]. e animats used in Créatúr also have a

genetically controlled appearance, to allow for the possibility of kin selection in

future. is was a key element of the approa used in this project, as will be

discussed in Section 3.2.9.

One criticism [67] that has been made of PolyWorld is that there is lile evi-

dence that the animats are becoming smarter as a result of evolution. e Hebbian

learning that takes place during an animat’s lifetime appears to be overwhelmingly

responsible for the results. One cause of this may be that the PolyWorld genomes

had limited control over the brain structure. To address this concern, evolution

was allowed to control multiple aspects of the brains of animats used in Créatúr

in the hope that improvements to the brain would occur over generations. In ad-

dition, improvements in decision-making was measured both within one lifetime,

and over generations.

2.5.3 Creatures

Creatures [68] is an ALife computer game created by Steve Grand. It was one of

the first commercial games to use maine learning. In the game, a user hates

animated creatures called Norns, and teaes them how to talk, feed themselves,

and protect themselves against predators. Users are able to create new “species”

45

using selective breeding and genetic “tinkering”. Norns also have a simplified bio-

emistry, haploid genetics, and an ANN “brain”. Grand ose to “fake” instinct

by allowing the organism to learn from its environment in utero. e game was

popular due to the diversity of the resulting animats, and was seen as providing

insight into how real world organisms may function and evolve.

Inspired by Grand’s discussion of the importance of finding someway to “boot-

strap” knowledge into the young norns the author provided something similar, but

more biologically realistic for the animats in Créatúr: the young learn about their

environment while still under parental care. is was a key element of the ap-

proa used in the Créatúr project, as will be discussed in Section 3.2.7.

2.5.4 Complexity

e most ambitious ALife projects aempt to create the type of complexity that

emerges in biology.

Artificial life resear can in many instances be aracterised as a

sear for the surprising… Biological life is full of surprises and there-

fore ALife should be as well [69].

One criticism frequently levied at ALife projects is that the environment is not

ri enough to evolve complexity.

Ecologists have long recognised that the complexity of an organism’s

behaviour is related to the environment it must “solve”. [70]

e importance of of a complex environment inspired the author to use a ri

data source as the environment (as will be discussed in Section 3.2.2), and to make

46

data analysis be the survival problem (discussed in Section 3.2.3). ese were key

elements of the approa used in the Créatúr project. However, a more com-

plex environment alone may not be sufficient; the animats themselves, and their

genomes, may need to be more complex.

Some people believe that natural selection given an infinite space of

genetic possibilities will inevitably produce more and more complex

adaptations. But so artificial life models like Tierra, Avida, and Eo

show conclusively that those meanisms are in general insufficient

to produce a trend of increasing complexity. e proof is simple: e

models embody those meanisms but they don’t exhibit the requisite

behaviour. Meanisms like natural selection in an infinite space of

genetic possibilities might be necessary for explaining the trend, but

they are not sufficient [71].

Partly to address this concern, the animat genomes used in the Créatúr are

complex, thereby allowing evolution to have a greater influence over the animats’

design.

2.5.5 Reproduction

Whether or not sexual reproduction confers an adaptive advantage to biological

lifeforms, it may be beneficial for ALife. Calabrea et al [72] compared haploid and

diploid genotypes in a genetic algorithm that evolvedweights for ANNs controlling

a robot. e solutions whi caused the robot to explore more of the environment

were allowed to reproduce. ey found that the diploid populations tended to

have lower average fitness, but higher peak fitness than the haploid populations.

47

is gave the diploid populations an advantage in a varying environment. Similar

results had been found earlier by Smith and Goldberg when working with genetic

algorithms for sear and optimisation [73].

[In] the anging environment diploids exhibit another feature that

aracterises them with respect to haploids, i.e., their capacity to keep

a genetic ”memory” of the past that can be useful when the population

must re-adapt to an environment towhi it has already adapted in the

past. Haploids have all their genes expressed and therefore their en-

tire genetic endowment becomes adapted to the current environment.

When the environment anges, the negative effects on fitness are felt

more strongly by haploids than by diploids whose genetic ”memory”,

recorded in their non- expressed genes, allows them to be less nega-

tively affected by environmental anges [72].

e majority of animats species that have been created are haploid. is sim-

plifies the implementation, but perhapsmore importantly, it also allows all animats

in a population to be potential mating partners. e heavy use of computational

resources by animats forces researers to work with small populations, and hav-

ing two sexes would halve the number of mating opportunities [64].

2.6 Soware Engineering

e Créatúr project required the development of new soware. e previous sec-

tions reviewed the literature that influenced what would be built; this section re-

views the literature that influenced how it would be built and tested.

48

2.6.1 Paradigm: Functional Programming

Functional programming is an approa to soware development that focuses on

the evaluation of functions in the mathematical sense. A function is pure; it is free

of side-effects and will yield the same result ea time it are invoked with the same

value. As a result, an expression in functional code is referentially transparent ; it

can be replaced with its value without anging the result. is is consistent with

the way expressions behave in mathematics. In fact, functional programming is

based on lambda calculus, whi is a formal system developed by Alonzo Chur

[74] for defining functions, function applications, and recursion.

Most programming languages widely used in commercial soware develop-

ment (su as C/C++, Java and Visual Basic) are imperative; the programmer spec-

ifies an algorithm for solving the problem. In contrast, functional programming

is declarative; the programmer writes a series of definitions leading to the desired

result, but does not specify how the computation is performed. e compiler is

free to oose any implementation that returns the correct result. Of course, a

program completely without side effects would not be very useful (it could not

perform any I/O, for example). Functional programming languages provide me-

anisms to isolate side-effects, state data, andmutable data from the functional parts

of the program.

e primary motivation for the increasing interest in functional programming

languages is that programs wrien in them are easier to parallelise. e la of

side effects makes it simpler to reason about concurrency, and allows the compiler

to generate code that is optimised for concurrent processing [75]. e support for

concurrency that functional languages provide is of particular interest in ANNs, as

49

their usefulness is oen limited by the number of neurons that they can simulate.

Another advantage is that it is generally easier to understand and predict the

behaviour of a functional program. Functional programming can improve mod-

ularity; modular programs are generally easier to understand [76]. Referential

transparency makes it possible to conduct equational reasoning on the code. For

example, if y = f(x) and z = h(y), then the second definition can safely be

rewrien as z = h(f(x)) without affecting the result. A program wrien in a

functional language resembles mathematical notation. is has obvious benefits

when solving mathematical problems su as neural networks. As will be shown

in this paper, there is a clear relationship between the equations and the final code.

is allows the programmer to focus on the equations, leaving the compiler to han-

dle the implementation.

Referential transparency also allows the compiler to defer the computation of

a value until it is needed, or even to skip the computation if it turns out not to be

required. A program that avoids unnecessary computations will usually be more

efficient.

An additional advantage of functional programming is the greater availabil-

ity of tools for property-based testing. In property-based testing, the programmer

writes assertions about logical properties that a function should fulfil; the tool then

generates the necessary input data and runs the tests, looking for cases where the

assertions fail. In practise, the programmer can test the soware more thoroughly,

andwith less effort, than would be possible using only conventional unit test meth-

ods. Property-based testing tools are especially easy to use with neural networks

implementations; the inputs, targets, and paerns are generally numeric, and the

tools can easily generate pseudo-random data in a suitable range [77,78]. Because

50

of these advantages, a functional programming language was used for Créatúr.

Of the most well-known functional languages, Haskell, F, List, Erlang, Scala,

and OCaml, only Haskell is a pure functional language. iChe, a property-

based testing tool, is available for Haskell. Also, benmark tests [79] indicated

that Haskell would perform well. For these reasons (and aer confirming Haskell’s

suitability using a pilot project, described in Chapter 4), Haskell was osen as the

programming language for the Créatúr project. Brief introductions to Haskell and

iChe are provided below.

2.6.2 Programming language: Haskell

Haskell [80] is a purely functional programming language named aer the logician

Haskell Curry. Haskell uses strong static typing. Some basic features of the Haskell

programming language are demonstrated below using simple examples.

e factorial of a positive integer n is the product of all integers from 1 to n. A

Haskell definition of the factorial function is shown below.

fact 0 = 1

fact n = n * fact (n-1)

e syntax for function invocation is function-name param1 param2 . . .

Parentheses are not normally required.

fact 7

Usually it is not necessary to specify a type signature for a function; in most

cases the compiler can determine an appropriate type signature. However, provid-

ing a type signature can make the programmer’s intention clearer.

fact :: Int -> Int

51

fact 0 = 1

fact n = n * fact (n-1)

e symbol :: is read ”has type” and introduces a type specification. e

notation Int -> Int indicates that the function fact takes one Int (integer)

parameter, and returns an Int.

Consider the type signature for the following function, whi takes two Int

parameters and returns a Bool (Boolean).

f :: Int -> Int -> Bool

e reader may be surprised by the presence of two -> operators, but this no-

tation hints at something very important and fundamental to functional program-

ming: the concept of currying, or partial function application. e -> operator is

right-associative. Parentheses can be added as shown below without anging the

meaning; this will help to illustrate how currying works.

f :: Int -> (Int -> Bool)

Wrien this way, another way to view f emerges. Instead of viewing it as a

function that takes two parameters, it can be thought of as a function takes one

Int, and returns a second function that takes an Int and returns a Bool. One way

to take advantage of this is to define a new function that partially applies f.

g :: Int -> Bool

g = f 3

us g is a function whi, when given a parameter x, returns a function whi

invokes fwith 3 as the first parameter, and x as the second parameter. For example,

suppose f is defined as follows:

52

f :: Int -> (Int -> Bool)

f x y = x > y

en g 4 = f 3 4 = 3 > 4 = false.

2.6.3 Property-based testing withiChe

Choosing to use a functional programming language allowed the use of more ad-

vanced testing teniques than are generally available for imperative developers.

Unit testing is the one of the key teniques for verifying imperative code. In this

tenique, the tester writes code to test individual cases. For some applications,

determining the desired result for ea test case can be time-consuming, whi

necessarily limits the number of cases that can be tested.

Property-based testing tools su asiChe [77] take a different approa.

e tester defines properties that should hold for all cases, or at least for all cases

satisfying certain criteria. In most cases, iChe can automatically generate

suitable pseudo-random test data and verify that the properties are satisfied, saving

the tester’s time. In keeping with the test-driven development [81] methodology,

these properties could be defined and the tests automated before any code is writ-

ten for the unit under test. In fact, it should be possible to define a significant

number of testable properties during requirements analysis.

iChe can also be invaluable in isolating faults, and finding the simplest

possible test case that fails. is is partially due to the way iChe works:

it begins with ”simple” cases (e.g., seing numeric values to zero or using zero-

length strings and arrays), and progresses to more complex cases. When a fault

is found, it is typically a minimal failing case. If the default functions provided

53

byiChe for generating pseudo-random test data are not suitable, the tester

can write custom functions.

2.7 Summary

e Créatúr project, and this thesis, incorporate ideas from a variety of fields.

ose ideas are summarised below, with references to the section in whi the

topic was discussed.

ere exist systems whi operate according to simple rules, but whi exhibit

complex behaviour that would be impractical or impossible to predict by merely

examining the rules. is behaviour is termed emergent (2.1.1). e variety of

biological life is an emergent phenomenon of the DNA molecule. Similarly, the

mind is widely thought to be an emergent phenomenon of the brain. e concept

of emergence (at least in its weaker form), is a recurring theme in this thesis.

e intentional stance treats an object as an agent with beliefs and desires, and

assumes that the object will act in accordance with those beliefs and desires (2.1.2).

Used with caution, the intentional stance can make it easier to discuss and predict

the behaviour of objects. It can offer insight, and suggest experiments that should

be performed. e intentional stance is used to describe the behaviour of animats

in the Créatúr project.

Evolution by natural selection may occur in any substrate, provided that it sat-

isfies the three conditions (2.2.1). It can be used to develop a complex and adaptive

system from simple parts, whi is one of the goals of both AI and ALife. It may

even be beneficial to include more than one type of evolution. A type of evolution

by natural selection may even occur in the brain (2.3.1). is may help to explain

54

how a mind arises from a brain. It may be useful to implement a form of Neural

Darwinism in AI and ALife projects. A type of evolution was incorporated into

the brains of the animats developed for the Créatúr project.

Sexual reproduction may be adaptive for both biological lifeforms and animats

(2.2.2). Most ALife projects use haploid organisms, but diploid organisms may

have an evolutionary advantage (2.5.5). e animats developed for the Créatúr

project are diploid, and reproduce sexually (i.e. ea parent contributes a set of

romosomes), but they have only one sex.

Human brains have similar wiring, at least in how they represent concrete

nouns and images (2.3.2). A possible explanation for this is that brains inherit

some “pre-wiring”; it may be useful to implement some genetically-determined

“pre-wiring” in the brains of animats. A type of genetically controlled neural pre-

wiring was used in dotes, one of the animats developed for the Créatúr project.

AI has produced interesting and practical teniques for modelling certain as-

pects of intelligence, including ANNs (2.4.1) and SOMs (2.4.2). Hebbian learning

(2.4.1) is a tenique used in ANNs where “cells that fire together, wire together”.

Many types of equations can be used to update the neural weights, including

Hebb’s Rule and Oja’s Rule. Hebbian learning was incorporated into the brains

of the animats developed for the Créatúr project. e SOM is particularly useful

for recognising paerns in data. A simplified SOM is incorporated into the brains

of wains, one of the animat species developed for the Créatúr project.

ALife programs can develop diverse ecologies in whi biological features su

as parasitism, predator prey cycles, and punctuated equilibrium naturally emerge

(2.5.1, 2.5.2). However, just as in biology, everything an animat does should have

a cost (2.5.2). It may be beneficial to have a meanism that protects animats until

55

they have learned how to survive. Ways to accomplish this include implement-

ing some sort of instinct (2.5.3) or parental care. In order to produce complex

behaviour, it may be necessary to have a complex environment and a complex

genome (2.5.4). e Créatúr project uses a paern-ri data source as the environ-

ment, and uses data analysis as the survival problem. e animat genomes used

in the Créatúr are complex.

It is generally easier to understand and predict the behaviour of a program if

it is wrien in a functional language (2.6.1). Functional programming languages

provide beer support for property-based testing, in whi the programmer writes

assertions about logical properties that a function should fulfil, and the tool then

generates and runs the tests. e Créatúr project uses Haskell, a functional pro-

gramming language (2.6.2), andiChe, a property-based testing tool.

56

Chapter 3

Objectives and Approa

is apter describes the objectives and the guiding principles of the Créatúr

project.

3.1 Objectives

e objectives of the Créatúr resear project were:

1. To evolve an ALife population with sufficient intelligence to discover pat-

terns in data, and to make survival decisions based on those paerns.

2. To create a population that adapts to its environment through both evolution

and lifetime learning.

3. To evolve an ALife population with some general-purpose problem solving

skills, that could be used as “seeds” for projects requiring specialised skills.

It should be feasible to create a specialised population by starting with an

existing population of animats with basic intelligence and introducing new

57

survivalallenges gradually until the animats have developed the new skills

required. furthermore, it should be faster to do this than it would be to evolve

a specialised population “from scrat”.

3.2 Approa

e key elements of the approa used in the Créatúr resear project are described

below. is approa is based on the resear as described in the literature review

in Chapter 2. e key elements of the approa are mapped to the objectives in

Appendix B.

3.2.1 Combine AI and ALife

As discussed in section 2.4, the most ambitious AI projects aempt to produce the

sort of intelligent behaviour found in Denne’s Popperian creatures. However,

it has so far proved impossible to define the aracteristics that would convince

us that a maine or a program is intelligent. Perhaps we would not recognise

intelligence unless it has a familiar form: a creature using intelligence to survive

in a complex environment. Perhaps it isn’t evenmeaningful to speak of intelligence

in any other context.

Most ALife projects use fairly simple brain designs; this is sufficient to model

many aspects of biology. But if the animats had more sophisticated brains, using

teniques from AI su as neural networks, perhaps they would exhibit more

complex behaviour.

58

3.2.2 Use data as the environment

As discussed in 2.5.4, a complex environment may be necessary to ALife project

However, simulating a complex environment usually requires a large amount of

programming and is processor-intensive. To address this, the environment used for

the Créatúr project is data – whi can be as complex as desired. e inhabitants

would survive – or not – based on their ability to discover paerns in the data and

to react appropriately.

In a sense, any ALife population can be said to live in a universe of data; the

animats are computer programs, and all programs do is manipulate data. But there

is a fundamental difference in Créatúr: e environment is not a simulation; it is

real… real data. ere is no layer of abstraction between the inhabitants of the

Créatúr program and their environment. is has several advantages:

• It is not necessary to decide in advance how sophisticated the animats should

be in order to solve the problem of interest. Assuming the problem is solv-

able, that sufficient time is allowed, and that the animats can evolve more

complexity, then the animats will become just as complex as they need to

be in order to “solve” their environment.

• It is easier to analyse the behaviour of the system because it can be described

naturally, using the intentional stance. For example, “the animat saw this

string of data, (mis)identified it as a source of edible food, and aempted to

eat it. It lost too mu energy as a result, and died.”

• e Créatúr habitat can be used in two ways: as a tool for studying ALife,

or as a tool for analysing complex data and discovering paerns.

59

• When the user’s goal is to study ALife (rather than to perform data analysis),

then any data set can be used as the environment provided it contains pat-

terns for the animats to discover. If a more complex environment is desired,

simply use more complex data. However, there must be paerns in the data;

random data is complex, but not useful.

Based on the literature review undertaken (see Chapter 2), using data directly

as the the environment is a novel approa to ALife.

3.2.3 Frame data analysis as a survival problem

Most data analysis problems can be re-framed as survival problems for animats.

Consider themost basic needs of any animal: eating, mating, and self-preservation.

In order to meet these needs, an animal must discover and recognise paerns, and

make predictions. Table 3.1 shows some examples of this analysis. Of course, these

predictions are not necessarily experienced as conscious thoughts in the animal’s

mind. However, since animals tend to act in ways that favour their survival, it is

reasonable to view an action that an animal takes as a prediction that the outcome

of that action will benefit that animal. is is an example of the intentional stance.

If the actions that an animat takes can be viewed (using the intentional stance)

as a prediction that the animat will benefit by that action, then we can get the

animats to make predictions of interest to us by arranging the environment so that

good predictions are beneficial to the animat’s survival. Table 3.2 lists some ex-

amples. In order to re-frame these applications as survival allenges for animats,

the data itself becomes a universe to interact with, and the paern of interest be-

comes a food source. By “eating” an object (string of data), an animat makes a

60

Table 3.1: Basic survival needs viewed as problems of paern recognition and
prediction.

need pattern sample prediction

food self If I try to eat this bit of flesh, I will
feel pain.

food prey is entity is edible, and looks weak.
I can cat it without expending too
mu of my energy.

reproduction others of my kind is entity looks healthy and is a
suitable mating partner.

reproduction offspring is entity is my ild; I must pro-
tect it.

self-preservation parent is entity will feed me and protect
me.

self-preservation predator is entity is a threat; I should flee.

prediction that the object is edible (i.e., a paern of interest), and that it will be

rewarded with energy. If desired, paerns could be grouped into types, and a ba-

sic need associated with ea. For example, paerns of one type might reduce

hunger when identified, in another, boredom. Imposing a hierary of needs (e.g.,

hunger, then mating, then boredom) allows the discovery of paerns of one type

to be prioritised over those of another type.

Based on the literature review undertaken (see Chapter 2), framing data anal-

ysis as a survival problem is a novel approa to ALife.¹

¹Genetic programming and evolutionary programming could, in a sense, be said to frame data
analysis as a survival problem, in that ea individual is a solution to a problem of interest, and the
individual lives or dies according to how successful it is as a solution. However, in this thesis the
term “survival problem” is used in a more biologically realistic sense: the animats must recognise
paerns in order to find food and mate. Furthermore, the animats used in Créatúr are not solutions,
they are problem solvers.

61

Table 3.2: Soware applications viewed as problems of paern recognition and
prediction. Note the similarity to Table 3.1.

application pattern sample

handwriting
recognition

e first symbol is ’h’. e next
symbol is ’O’, ’o’ or ’0’. e next
symbol is either ’t’ or ’+’.

is string is the word
“hot”.

log data analysis is data entry is anomalous. Probably an intrusion
aempt; report it.

ality of Service e mobile unit was at position
p1 at time t1, and is now at posi-
tion p2.

e user is moving out
of range, re-route the
call.

3.2.4 Use multiple kinds of evolution

e ultimate goal of ALife and AI is to build systems that mat the complex and

purposeful behaviour found in nature. However,

is presents a dilemma: we do not understand su behaviours well

enough to program them into a maine. So we must either increase

our understanding until we can, or create a systemwhi outperforms

the specifications we give it. e first possibility includes the tradi-

tional top-down methodology, whi appears as inappropriate here

as it has so far proved to be for (symbolic) artificial intelligence… e

second option is to create systems whi somehow outperform the

specifications given them and whi are open to producing increas-

ingly complex advantageous behaviours. Evolution in nature has no

(explicit) evaluation function. [is] is why novel structures and be-

haviours emerge [67].

62

Projects su as Tierra and PolyWorld used evolution effectively, creatingmod-

els that were life-like in many aspects. eir success, combined with the theory of

Neural Darwinism, suggest that using multiple kinds of evolution might support

more life-like behaviour. e following kinds of evolution are used in Créatúr:

Traditional evolution Rather than have a fixed brain design, use genetics to spec-

ify the parameters and allow evolution to improve the brain design. Also

allow the animats to genetically inherit some “pre-wiring” of the brain. is

should allow later generations to be more intelligent than earlier genera-

tions.

Neural Darwinism Use natural selection within the brain, as it operates, to form

new connections and paerns, and to prune connections and paerns that

prove to be least useful. is should allow an individual to continue learning

throughout its lifetime, and to react to anges in the environment. (e

anges to the brain made by Neural Darwinism would not be passed on to

any offspring.)

Based on the literature review undertaken (see Chapter 2), using multiple kinds

of evolution is a novel approa to ALife.

3.2.5 No fitness function except survival

In Genetic Algorithms, fitness functions are used in situations where it is possible

to objectively assess the quality of a solution. But in ALife and AI, the goal is to

build animats that are similar to biological lifeforms. In biology the only way to

assess the fitness of a particular combination of genes is to compare the survival

63

of the sub-population carrying them to the population at large; there is no other

criterion. Nature does not have an explicit fitness function, and as discussed in

Sections 2.5.1 and 2.5.2, Tierra and PolyWorld did not use fitness functions. Neither

does Créatúr.

3.2.6 No free lun

Everything an animat does should have a cost. is design principle is based on a

lesson learned from PolyWorld’s “indolent cannibals” (described in Section 2.5.2).

In Créatúr, mating, having offspring, and rearing them requires energy. ey also

lose energy through a “metabolism tax” based on brain complexity, as in Poly-

World.

3.2.7 Protect the young while they learn

A brand-new, empty brain is useless. An animat must have some basic skills in

order to fend for itself. One biological solution to this is instinct, an inherent be-

haviour that does not need to be learned. However, since Créatúr uses evolution to

develop the brain aritecture, it would be difficult to simulate instinct by creating

some initial connections; we don’t know whi concept will be associated with a

particular neuron. If instincts are needed, evolution will have to implement them.

is may take the form of “pre-wiring”, as described in Section 3.2.4.

A second biological solution is parenting. Depending on the species, par-

ents may protect their offspring while they learn, model adaptive behaviours that

the offspring will emulate, or even actively tea them adaptive behaviours. In

Créatúr, parents fill the first two roles. Offspring “observe” their parents and learn

64

from their behaviour by sharing in the outcome. For example, if the parent eats

something edible, the energy gained will be shared between parent and ild, al-

lowing the ild to make a connection between food and the reduction of hunger.

Children cannot act independently; they can only benefit or suffer through the ac-

tions of the nurturing parent. ere are no predators in Créatúr to defend against;

nevertheless parents indirectly protect their offspring by virtue of the fact that they

are less likely to make fatal mistakes than the ild would if le to survive alone.

Based on the literature review undertaken (see Chapter 2), protecting the young

while they learn is a novel approa to ALife.

3.2.8 Use diploid animats

As discussed in 2.5.5, sexual reproductionmay be beneficial in an ALife population,

however it is seldom used because it halves the number of mating opportunities,

and ALife populations are usually small due to processor limitations. e animats

used in this project are diploid, although they only have one sex. is provides a

way to exploit some of the advantages of sexual reproduction, while still maximis-

ing the number of mating opportunities.

3.2.9 Provide a means for animats to estimate degrees of kin-

ship

In the biological world, appearance can be used to distinguish between animals

of one’s own species and animals of other species (or sub-species). PolyWorldians

have a genetically-determined appearance for this reason, as discussed in 2.5.2.

Although it was not expected that the lifeforms in Créatúr would demonstrate kin

65

selection or speciation in the short term, this might occur eventually. To support

this possibility, the animats have a genetically-determined appearance, and they

can sense the appearance of potential mates.

3.3 Summary

e key elements of the approa used in the Créatúr project are:

• Combine AI and ALife.

• Use data as the environment. ★★★

• Frame data analysis as a survival problem. ★★★

• Use multiple kinds of evolution. ★★★

• No fitness function except survival.

• No free lun.

• Protect the young while they learn. ★★★

• Use diploid animats.

• Provide a means for animats to estimate degrees of kinship.

Elements marked with ★★★ are novel approaes to ALife, based on the lit-

erature review undertaken.

66

Chapter 4

Pilot Project: Numeral Recognition

Early in the Créatúr project, the author identified the following needs:

• to gain familiarity with the some of the tenologies (neural networks and

theallenges involved in training them, functional programming, property-

based testing) considered for use in Créatúr

• to gain familiarity with the some of the tools (Haskell, iChe, the

MNIST database) considered for use in Créatúr

• to assess the suitability of these tenologies and tools

Tomeet those needs, a smaller application was developed as a pilot project. e

pilot project was to implement a neural network whiwould recognise handwrit-

ten numerals. is apter describes that pilot project.

67

4.1 e MNIST database

is pilot project used the MNIST database of handwrien digits, whi consists

of a training set of 60,000 examples and a test set of 10,000 examples [82, 83]. e

digits have been size-normalised and centred in a fixed-size image. is database

was used because it requires minimal pre-processing, has been widely used for

testing neural network training methods, and results for common methods are

readily available.

eMNIST databasewas created using bla-and-white images of handwrien

numerals collected from U.S. Census Bureau employees and high-sool students.

e images were re-sized to fit into a 20x20 pixel square while preserving their

aspect ratio, and anti-aliased, resulting in an image with 256 grey levels. Ea

image was then placed on a 28x28 pixel white baground so that the centre of

mass of the pixels was positioned in the centre of the 28x28 square. A sample

image is shown in Figure 4.1. e MNIST data was used as-is; without additional

image processing.

Figure 4.1: A sample numeral from the MNIST database.

68

4.2 e network

e network used in this pilot project is a feed-forward network, as described in

2.4.1. ere is only one hidden layer. e 784 pixels from the image are presented

to the input layer, whi contains 784 neurons. e output layer has 10 neurons,

one for ea of the digits. e size of the hidden layer can be adjusted to aieve

a balance between accuracy and performance.

4.3 Ba-propagation

Ba-propagation is a common method of training artificial neural networks. It

was osen for the pilot project because it is easy to implement and results for

it are available [84], not because it was anticipated that Créatúr would use ba-

propagation.

Aer an input paern is propagated forward through the network to produce

an output paern, the output paern is compared to the target (desired) paern,

and the error is then propagated baward. During the ba-propagation phase,

ea neuron’s contribution to the error is calculated, and the network configura-

tion can be modified with the goal of reducing future errors. Ba-propagation

is a supervised training method, so the correct answers for the training set must

be known in advance, or be calculable. A simple ”no-frills” ba-propagation al-

gorithm was used; it is described below. is simple algorithm is sufficient for

demonstrating a functional approa to neural networks.

e error is a function of the vector difference between the output paern and

the target paern (desired output). e network can be trained by adjusting the

69

network weights with the goal of reducing the error. Ba-propagation is one te-

nique for oosing the new weights [54]. is is a supervised training process; the

network is presented with both the input paern as well as the target paern. e

error from the output layer is propagated baward through the hidden layers in

order to determine ea layer’s contribution to the error. is process is illustrated

in Figure 4.2. e weights in ea layer are then adjusted to reduce the error for

that input paern.

Figure 4.2: Ba-propagation

4.4 Building a neural network

4.4.1 Building a neuron

In this implementation, matrices were used to represent the weights for the neu-

rons in ea layer. e matrix calculations are performed using Alberto Ruiz’s

hmatrix [85, 86], a purely functional Haskell interface to basic matrix compu-

tations and other numerical algorithms in GSL [87], BLAS [88, 89] and LAPACK

70

[90,91]. With a matrix-based approa, there is no need for a structure to represent

a single neuron. Instead, the implementation of the neuron is distributed among

the following entities

• the inputs from the previous layer

• the output to the next layer

• a column in the weight matrix

• an activation function (in this implementation, the same function is used for

all neurons in all layers except the sensor layer)

eweightmatrixwas implemented using the Matrix type provided by hmatrix.

e inputs, outputs and paerns are all column vectors; these use the Matrix type,

via the synonym ColumnVector. In Haskell, the type keyword defines an alterna-

tive name for an existing type; it does not define a new type.¹

type ColumnVector a = Matrix a

e final element needed to represent the neuron is the activation function.

e implementation of this shows one of the advantages of a functional approa.

Like most most functional programming languages, Haskell supports first-class

functions; a function can be used in the same way as any other type of value.

It can be passed as an argument to another function, stored in a data structure,

or returned as result of function evaluation. e user can supply any activation

function as an argument at the time the network is created.

¹A complete code listing is available from the author, along with a sample aracter recognition
application.

71

It is convenient to create a structure to hold both the activation function and its

first derivative. (e ba-propagation algorithm requires that the activation func-

tion be differentiable, and the derivative is required to apply the ba-propagation

method.) is helps to reduce the ance that the user will ange the activation

function and forget to ange the derivative. is type is defined using Haskell’s

record syntax, and include a string to describe whi activation function is being

used.

data ActivationSpec

= ActivationSpec

{

asF :: Double -> Double

, asF' :: Double -> Double

, desc :: String

}

e first field, asF, is the activation function, whi takes a Double (double

precision, real floating-point value) as input and returns a Double. e second

field, asF', is the first derivative. It also takes a Double and returns a Double. e

last field, desc, is a String value containing a description of the function.

Accessing the fields of a value of type ActivationSpec is straightforward. For

example, if the name of the value is s, then its activation function is asF s, its first

derivative is asF' s, and its description is desc s.

As an example of how to create a value of the type ActivationSpec, here is

one for the identity function f(x) = x, whose first derivative is f ′(x) = 1.

identityAS = ActivationSpec

{

72

asF = id

, asF' = const 1

, desc = "identity"

}

e function id is Haskell’s predefined identity function. e definition of

asF' may seem puzzling. e first derivative of the identity function is 1, but it is

not possible to write asF' = 1. Why not? Recall that the type signature of asF' is

Double -> Double, so the expression assigned to it must take a Double and returns

a Double. However, 1 is just a single number. It could be of type Double, but not

Double -> Double. Any easy way to solve this issue, is to use the predefined

const function, whi takes two parameters and returns the first, ignoring the

second. Partially applying it (supplying 1 as the first parameter), yields a function

that takes a single parameter, and always returns the value 1. So the expression

const 1 can satisfy the type signature Double -> Double.

e hyperbolic tangent is a commonly-used activation function; the appropri-

ate ActivationSpec is defined below.

tanhAS :: ActivationSpec

tanhAS = ActivationSpec

{

asF = tanh

, asF' = tanh'

, desc = "tanh"

}

tanh' x = 1 - (tanh x)^2

73

is takes advantage of Haskell’s support for first-class functions to store func-

tions in a record structure, and to pass functions as parameters to another function

(in this case, the ActivationSpec constructor).

4.5 Building a neuron layer

To define a layer in the neural network, a record structure containing the weights

and the activation specification is used. e weights are stored in an n×mmatrix,

where n is the number of inputs andm is the number of neurons. e number of

outputs from the layer is equal to the number of neurons,m.

data Layer

= Layer

{

lW :: Matrix Double

, lAS :: ActivationSpec

}

e weight matrix, lW, has type Matrix Double. is is a matrix whose el-

ement values are double-precision floats. is type is defined in the hmatrix

paage. e activation specification, lAS uses the type ActivationSpec, defined

earlier. Again this uses the support for first-class functions; a value of type Layer

is created by passing a record containing function values into another function,

the Layer constructor.

74

4.5.1 Assembling the network

e network consists of a list of layers, and a parameter to control the rate at whi

the network learns new paerns.

data BackpropNet

= BackpropNet

{

layers :: [Layer]

, learningRate :: Double

}

e notation [Layer] indicates a list whose elements are of type Layer. A

value of type BackpropNet can be created using an expression su as the follow-

ing.

layer = Layer { lW=w, lAS=s }

Of course, the number of outputs from one layer must mat the number of

inputs to the next layer. is is ensured by not exporting the BackpropNet con-

structor outside themodule, and instead requiring the user to call a special function

to construct the network. It is necessary to verify that the dimensions of a consec-

utive pair of network layers are compatible; e following function will report an

error if a mismat is detected.

checkDimensions :: Matrix Double -> Matrix Double -> Matrix Double

checkDimensions w1 w2 =

if rows w1 == cols w2

then w2

else error "Inconsistent dimensions in weight matrix"

75

Assuming that no errors are found, checkDimensions simply returns the sec-

ond layer in a pair.

e constructor function should invoke checkDimensions on ea pair of lay-

ers. In an imperative language, a for loop would typically be used. In functional

languages, a recursive function could be used to aieve the same effect. However,

there is a more straightforward solution using an operation called a scan. ere are

several variations on this operation, and it can proceed either from le to right, or

from right to le. is uses the predefined operation scanl1, read ”scan-ell-one”

(not ”scan-eleven”). e leer l indicates that the scan starts from the le, and the

numeral 1 indicates the variant that takes no starting value.

scanl1 f [x1, x2, x3, ...] == [x1, f x1 x2, f (f x1 x2) x3, ...]

Applying scanl1 checkDimensions to a list of weight matrices gives the fol-

lowing result (again assuming no errors are found).

scanl1 checkDimensions [w1, w2, w3, ...]

== [w1, checkDimensions w1 w2,

checkDimensions (checkDimensions w1 w2) w3, ...]

== [w1, w2, w3, ...]

erefore, if the dimensions of the weight matrices are consistent, this opera-

tion simply returns the list of matrices. e next task is to create a layer for ea

weight matrix supplied by the user. In an imperative language, the program might

operate on ea element in the weight matrix list using a for loop. In Haskell, the

map function aieves the same goal. e expression map buildLayer checkedWeights

will return a new list, where ea element is the result of applying the function

buildLayer to the corresponding element in the list of weight matrices. e def-

76

inition of buildLayer is simple, it merely invokes the constructor for the type

Layer, defined earlier.

buildLayer w = Layer { lW=w, lAS=s }

Using the operations discussed above, the constructor function, buildBackpropNet,

can now be defined.

buildBackpropNet

:: Double

-> [Matrix Double]

-> ActivationSpec

-> BackpropNet

buildBackpropNet lr ws s = BackpropNet { layers=ls, learningRate=lr }

where checkedWeights = scanl1 checkDimensions ws

ls = map buildLayer checkedWeights

buildLayer w = Layer { lW=w, lAS=s }

e primary advantage of using functions su as map and scanl1 is not that

they save a few lines of code over an equivalent for loop, but that these functions

more clearly indicate the programmer’s intent.

4.6 Running the Network

4.6.1 A closer look at the network structure

e network consists of multiple layers of neurons, numbered from 0 to L, as

illustrated in Figure 4.3. Ea layer is fully connected to the next layer. Layer 0 is

the sensor layer. It performs no processing; ea neuron receives one component

77

of the input vector x and distributes it, unanged, to the neurons in the next layer.

Layer L is the output layer. e layers l = 1..(L− 1) are hidden layers. zlk is the

output from neuron k in layer l.

Figure 4.3: Propagation through the network.

e following notation is used.

• xi is the ith component of the input paern.

• zli is the output of the ith neuron in layer l.

• yi is the ith component of the output paern.

4.6.2 Propagating through one layer

e activation of neuron k in layer l is

a0k = xk (4.1)

78

alk =
Nl−1∑
j=1

wlkjzl−1,j l > 0 (4.2)

where

• Nl−1 is the number of neurons in layer l − 1.

• wlkj is the weight applied by the neuron k in layer l to the input received

from neuron j in layer l − 1. (Recall that the sensor layer, layer 0, simply

passes along its inputs without ange.)

e activation for layer l can be expressed using a matrix equation.

al =


x l = 0

Wlx l > 0

(4.3)

e output from the neuron is

zlk = f(alk) (4.4)

where f(a) is the activation function. For convenience, the function mapMatrix

is defined; it applies a function to ea element of a matrix (or column vector). is

is analogous to Haskell’s map function. e layer’s output is calculated using the

Haskell expression mapMatrix f a, where f is the activation function.

If the only goal is to propagate the input through the network, only the output

from the final layer, zL, is required. However, the intermediate calculations must

be kept because they will be required during the ba-propagation pass. All of the

necessary information is kept in the following record structure. Note that anything

79

between the symbol -- and the end of a line is a comment, and is ignored by the

compiler.

data PropagatedLayer

= PropagatedLayer

{

-- | The input to this layer

pIn :: ColumnVector Double

-- | The output from this layer

, pOut :: ColumnVector Double

-- | First derivative of the activation function for this layer

, pF'a :: ColumnVector Double

-- | The weights for this layer

, pW :: Matrix Double

-- | The activation specification for this layer

, pAS :: ActivationSpec

}

| PropagatedSensorLayer

{

-- | The output from this layer

pOut :: ColumnVector Double

}

is structure has two variants. For the sensor layer (PropagatedSensorLayer),

the only information needed is the output, whi is identical to the input. For all

other layers (PropagatedLayer), the full set of values is required. Now it is possi-

ble to define a function to propagate through a single layer.

80

propagate

:: PropagatedLayer

-> Layer

-> PropagatedLayer

propagate layerJ layerK = PropagatedLayer

{

pIn = x

, pOut = y

, pF'a = f'a

, pW = w

, pAS = lAS layerK

}

where x = pOut layerJ

w = lW layerK

a = w <> x

f = asF (lAS layerK)

y = mapMatrix f a

f' = asF' (lAS layerK)

f'a = mapMatrix f' a

e operator <> performs matrix multiplication; it is defined in the hmatrix

paage.

4.6.3 Propagating through the network

To propagate through the entire network, a sensor layer is created to provide the

inputs, and use another scan operation, this time with propagate. e scanl func-

81

tion is similar to the scanl1 function, except that it takes a starting value.

scanl f z [x1, x2, ...] == [z, f z x1, f (f z x1) x2), ...]

In this case, the starting value is the sensor layer.

propagateNet

:: ColumnVector Double

-> BackpropNet

-> [PropagatedLayer]

propagateNet input net = tail calcs

where calcs = scanl propagate layer0 (layers net)

layer0 = PropagatedSensorLayer{ pOut=validatedInputs }

validatedInputs = validateInput net input

e function validateInput verifies that the input vector has the correct length,

and that the elements are within the range [0,1]. Its definition is straightforward.

4.7 Training the network

is section uses the matrix equations for basic ba-propagation as formulated by

Hristev [92, Chapter 2]. e ba-propagation algorithm requires ea layer to be

operated on in turn, using the results of the operation on one layer as input to the

operation on the next layer. e input vector x is propagated forward through the

network, resulting in the output vector zL, whi is then compared to the target

vector t (the desired output). e resulting error, zL−t is then propagated baward

to determine the corrections to the weight matrices:

Wnew = Wold − µ∇E (4.5)

82

where µ is the learning rate, and E is the error function. For E, the sum-of-

squares error function, defined below, can be used.

E(W) ≡ 1

2

NL∑
q=1

[zLq(x)− tq(x)]
2 (4.6)

where zLq is the output from neuron q in the output layer (layer L). e error

gradient for the last layer is given by:

∇zLE = zL(x)− t (4.7)

e error gradient for a hidden layer can be calculated recursively according to

the equations below.²

(∇E)l = [∇zlE � f ′(al)] · zTl−1 for layers l = 1, L (4.8)

∇zlE = W t
l+1 · [∇zl+1

E � f ′(al+1)] calculated recursively from L-1 to 1 (4.9)

e symbol � is the Hadamard, or element-wise product.

4.7.1 Ba-propagating through a single layer

e result of ba-propagation through a single layer is stored in the structure

below.³

²See [92, Chapter 2] for the derivation.
³e expression ∇zlE is not easily represented in ASCII text, so the name ”dazzle” is used in

the code.

83

data BackpropagatedLayer

= BackpropagatedLayer

{

-- | Del-sub-z-sub-l of E

bpDazzle :: ColumnVector Double

-- | The error due to this layer

, bpErrGrad :: Matrix Double

-- | Value of 1st derivative of the activation function

, bpF'a :: ColumnVector Double

-- | The input to this layer

, bpIn :: ColumnVector Double

-- | The output from this layer

, bpOut :: ColumnVector Double

-- | The weights for this layer

, bpW :: Matrix Double

-- | The activation specification for this layer

, bpAS :: ActivationSpec

}

enext step is to define the backpropagate function. For hidden layers, equa-

tion (4.9) is used.

backpropagate

:: PropagatedLayer

-> BackpropagatedLayer

-> BackpropagatedLayer

backpropagate layerJ layerK = BackpropagatedLayer

{

84

bpDazzle = dazzleJ

, bpErrGrad = errorGrad dazzleJ f'aJ inputJ

, bpF'a = pF'a layerJ

, bpIn = pIn layerJ

, bpOut = pOut layerJ

, bpW = pW layerJ

, bpAS = pAS layerJ

}

where dazzleJ = wkT <> (dazzleK * f'aK)

dazzleK = bpDazzle layerK

wkT = trans (bpW layerK)

errK = bpErrGrad layerK

f'aK = bpF'a layerK

f'aJ = pF'a layerJ

inputJ = pIn layerJ

errorGrad :: ColumnVector Double -> ColumnVector Double ->

ColumnVector Double -> Matrix Double

errorGrad dazzle f'a input = (dazzle * f'a) <> trans input

e function trans calculates the transpose of a matrix. e operator * used

in the definition of dazzleJ appears between two column vectors, dazzleK and

f'aK, so it calculates the Hadamard (element-wise) product rather than a scalar

product. e final layer uses equation (4.7).

backpropagateFinalLayer

:: PropagatedLayer

-> ColumnVector Double

85

-> BackpropagatedLayer

backpropagateFinalLayer l t = BackpropagatedLayer

{

bpDazzle = dazzle

, bpErrGrad = errorGrad dazzle f'a input

, bpF'a = (pF'a l)

, bpIn = pIn l

, bpOut = pOut l

, bpW = pW l

, bpAS = pAS l

}

where dazzle = pOut l - t

f'a = pF'a l

input = pIn l

4.7.2 Ba-propagating through the network

e scanl function, whi operates on an array from le to right, was discussed

above. For the ba-propagation pass, scanr, whi operates from right to le,

is used. Figure 4.4 illustrates how scanl and scanr will act on the neural net-

work. e boxes labelled pc and bpc represent the result of ea propagation op-

eration and ba-propagation operation, respectively. Viewed in this way, it is

clear that scanl and scanr provide a layer of abstraction that is ideally suited to

ba-propagation.

e definition of the backpropagateNet function is very similar to that of

propagateNet.

86

Figure 4.4: A sematic diagram of the implementation.

backpropagateNet

:: ColumnVector Double

-> [PropagatedLayer]

-> [BackpropagatedLayer]

backpropagateNet target layers =

scanr backpropagate layerL hiddenLayers

where hiddenLayers = init layers

layerL = backpropagateFinalLayer (last layers) target

4.7.3 Updating the weights

Aer the ba-propagation calculations have been performed, the weights can be

updated using equation (4.5).

update :: Double -> BackpropagatedLayer -> Layer

update rate layer = Layer

{

lW = wNew

87

, lAS = bpAS layer

}

where wOld = bpW layer

delW = rate .* bpErrGrad layer

wNew = wOld - delW

e operator .* performs element-wise multiplication of a matrix by a scalar.

4.8 Testing

An in-depth look at iChe is beyond the scope of this thesis. Instead, one

example is used to illustrate the value of property-based testing. What proper-

ties should a neural network satisfy, no maer what input data is provided? One

property it should satisfy is that if the network is trained once with a given input

paern and target paern, and immediately run on the same input paern, the

error should be reduced. Another way of saying this is that training should re-

duce the error in the output layer, unless the error is negligible to begin with. e

property is defined as follows.

-- | Property: training reduces error in the final (output) layer

trainingReducesFinalLayerError ::

(ColumnVector Double, Layer, ColumnVector Double) -> Property

trainingReducesFinalLayerError (x, l, t) =

classifyRange "len x " n 0 25 $

classifyRange "len x " n 26 50 $

classifyRange "len x " n 51 75 $

classifyRange "len x " n 76 100

88

(errorAfter < errorBefore || errorAfter < 0.01)

where n = inputWidth l

pl0 = PropagatedSensorLayer{ pOut=x }

pl = propagate pl0 l

bpl = backpropagateFinalLayer pl t

errorBefore = P.magnitude (t - pOut pl)

lNew = update 0.0000000001 bpl

plNew = propagate pl0 lNew

errorAfter = P.magnitude (t - pOut plNew)

-- | Testable property:

-- | Training reduces error in the final (output) layer

prop_trainingReducesFinalLayerError :: Property

prop_trainingReducesFinalLayerError =

forAll arbLayerTestData trainingReducesFinalLayerError

e function trainingReducesFinalLayerError takes a tuple consisting of

an input paern x, an output layer l, and a target paern t, and returns a Boolean

to indicate whether or not the property holds. (A tuple is a way to paage sev-

eral values as a single value. Unlike lists, the elements in a tuple do not have to

be of the same type.) is particular property only es that training works for

an output layer; the complete implementation tests other properties, including the

effect of training on hidden layers. e resulting property returns true if the er-

ror before training is less than the error aer, or if the error is already negligible

(less than 0.01 for this test). e classifyRange statements are useful when run-

ning the tests interactively; they display a brief report indicating the distribution

89

of the test coverage. e function trainingReducesFinalLayerError specifies

that a custom generator for pseudo-random test data, arbLayerTestData, is to be

used. e generator arbLayerTestData ensures that the ”simple” test cases that

iChe starts with consist of short paerns and a network with a small total

number of neurons. is helps to ensure that if there are errors, the first failing

test case found will be easier to analyze.

e test is run in GHCi, a Haskell interpreter.

ghci> quickCheck prop_trainingReducesFinalLayerError

+++ OK, passed 100 tests:

62% len x 0..25

24% len x 26..50

12% len x 51..75

2% len x 76..100

By default,iChe runs 100 test cases. Of these, 62% of the paerns tested

were of length 25 or less. More test cases can be requested; the test of 10,000 cases

below ran in 20 seconds.⁴ It would not have been practical to write unit tests for

this many cases, so the benefit of property-based testing as a supplement to unit

testing is clear.

ghci> quickCheckWith Args{replay=Nothing, maxSuccess=10000,

maxDiscard=100, maxSize=100} prop_trainingReducesFinalLayerError

+++ OK, passed 10000 tests:

58% len x 0..25

25% len x 26..50
⁴On a 3.00GHz quad core processor running Linux

90

12% len x 51..75

3% len x 76..100

4.9 Summary

Haskell provides operations su as map, scanl, scanr, and their variants, that are

particularly well-suited for implementing neural networks in general, and ba-

propagation in particular. ese operations are not unique to Haskell; they are

part of a category of functions commonly provided by functional programming

languages to factor out common paerns of recursion and perform the types of

operations that would typically be performed by loops in imperative languages.

Other operations in this category include folds, whi operate on lists of values

using a combining function to produce a single value, and unfolds, whi take a

starting value and a generating function, and produce a list.

Functional programming has some clear advantages for implementing mathe-

matical solutions. ere is a straightforward relationship between the mathemat-

ical equations and the corresponding function definitions. Note that in the ba-

propagation example, it was only necessary to create data structures and write

definitions. At no point were instructions provided on how to sequence the oper-

ations. e final results were defined in terms of intermediate results, whi were

defined in terms of other intermediate results, eventually leading to definitions in

terms of the inputs. e compiler is responsible for either finding an appropriate

sequence in whi to apply the definitions, or reporting an error if the definitions

are incomplete.

Property-based testing has obvious benefits. With minimal effort, the applica-

91

tion can be tested very thoroughly. But the greatest advantage of property-based

testing may be its ability to isolate bugs and produce a minimal failing test case. It

is mu easier to investigate a problem when the matrices involved in calculations

are small.

Functional programming requires a different mind-set than imperative pro-

gramming, whi can lead to a conceptual mismat. Textbooks on neural net-

work programming usually provide derivations and definitions, but with the ulti-

mate goal of providing an algorithm for ea tenique discussed. e functional

programmer needs only the definitions, but would be wise to read the algorithm

carefully in case it contains additional information not mentioned earlier.

Functional programming may not be suited to every programmer, or to every

problem. However, some of the concepts demonstrated here can be applied in im-

perative languages. Some imperative languages have borrowed features su as

first-class functions, maps, scans and folds from functional languages. And some

primarily functional languages provide meanisms for doing object-oriented pro-

gramming. Crossover between these two paradigms is beneficial because it pro-

vides programmers with more ways to approa problems.

As a result of this pilot project, it was decided to use Haskell, iChe, and

the MNIST database in the Créatúr project.

92

Chapter 5

Créatúr: an ALife habitat

is apter describes Créatúr, a reusable soware framework developed for this

project, whi automates experiments with artificial lifeforms and encapsulates

functionality common to most ALife species. e framework is described from

the perspective of a potential user; for a more formal requirements definition, see

Appendix B. For advice on how to set up an experiment using Créatúr, see Section

8.1.2.

Créatúr consists of a) a daemon (baground task) whi is responsible for

seduling and running all events in the environment, and b) a library of functions

for implementing common behaviours su as eating, mating, and metabolism.

e user provides the implementation of the animats and other objects in the vir-

tual environment. is aritecture is illustrated in Figure 5.1.

93

Figure 5.1: Créatúr aritecture

5.1 Features of Créatúr

Créatúr automates tasks whi are independent of the particular animats imple-

mentation. It provides the features listed below.

• Generating an initial populationwith random genes, based on a user-specified

genome.

• Maintaining a minimum population by generating and adding new random

animats. is feature is primarily used to diagnose problems. If a population

is dying off, it may be easier to investigate the reason while the experiment

is still running.

• Assigning a unique ID to all animats, whether born or generated. is is for

convenience in tracing the activities of a particular animat

• Removing dead animats from the population and ariving them for further

study. An animat dies when its energy level reaes zero; there is no fitness

94

function.

• Representing data as objects in the environment. is makes it easy to use

the data as the ALife environment. For example, ea record in a database

table could be an object.

• Seduling random encounters of animats with objects in the environment,

and between pairs of animats.

• When an encounter occurs, presenting the relevant sensory inputs to the

animats involved, along with that animat’s current status. e appropriate

course of action in a given situation may depend on whether the animat is

currently hungry, passionate, or bored, so the animat needs this information.

• Regularly deducting energy from animats to simulate metabolic require-

ments.

• “Reading” the animats’ decisions in response to encounters, and enacting

the consequences. For example, if an animat ooses to eat something, the

result may be an increase in the animat’s energy level. If an animat ooses

to mate with another animat, the result is the birth of a new animat.

• Implementing reproduction between animats, and transferring some energy

from both parents to the offspring.

• Keeping offspring with one parent until the offspring reaes maturity. is

gives the ild time to learn about the environment, and to learn survival

teniques from the parent.

95

• Apportioning energy gains and losses between a parent and the ild it is

caring for. is helps to ensure that the ild survives until maturity.

• Recording events, decisions, outcomes, and statistics to a rotating log file.

• Running as a system daemon whi the user can start, stop, and restart as

needed.

• Regularly saving the state of all animats, and persisting across invocations of

the daemon. is allows the user to examine the population while Créatúr

is running. Ea animat is saved in a separate file. If a file containing one

animat’s data is corrupted (e.g., in a power failure or disk crash), the file

can be deleted and the loss of the animat can be interpreted as an accidental

death. However, if all animats are wrien to a single file whi becomes

corrupted, it might be tedious or difficult to recover the population.

• Keeping the system running, even when “errors” occur. A “bug” might have

consequences that evolution could exploit in interesting ways. For this type

of application, the user should make the decision to halt a trial or continue,

not the soware.

5.2 Créatúr set-up

In order to run Créatúr, the user must provide implementations for a) one or more

species of animats, and b) one or more types of objects for the animats to interact

with. Créatúr is compiled with the user implementations to produce an executable

program. e requirements for user implementations are listed below.

96

5.2.1 Animats

Ea species implementation must make the features and operations listed below

available to Créatúr.

• methods for determining information about the appearance of all animats

in the environment.

• a method to feed sensory information to an animat about the environment

(exteroception), and about its current state and physical needs (interocep-

tion)

• a method to read the action the animat has decided to take in response.

• a method for creating random strings of genetic material, suitable for con-

structing an initial population.

• a method whi, given two alleles, applies the appropriate dominance rela-

tionship (see Section 5.3.3). is allows the user to implement dominant and

recessive alleles, incomplete dominance, etc.

• methods to encode a gene sequence to a byte string, and decode a byte string

into a gene sequence. e encoding seme must be designed so that any

random byte string can be decoded into a valid gene sequence. Requiring

the genome design to be robust in this way helps to ensure that any useful

partial solutions are not lost; they remain available to future generations.

Also, evolution may proceed more quily if all matings result in an animat.

is reduces the possibility that evolution might get temporarily stu in a

97

”dead end”. ere is no guarantee that the animat resulting from a particular

gene sequence will be viable, however.

• a method for constructing an animat from its genome, used for reproduction.

• methods for determining and updating the animat’s current energy level,

passion level, boredom level, age, etc.

• methods for saving and restoring the animat’s state.

• a method for determining the animat’s metabolism, i.e., the energy it uses

just to stay alive. is allows the user to influence the evolution of the animat

species. For example, if the metabolism cost is partially based on brain size,

this can help to ensure that the species doesn’t evolve excessively large brains

(whi would consume excessive processor time).

• a method for determining whether or not an animat is mature.

• a method for determining an animat’s level of devotion to potential off-

spring.

As long as the features listed above are provided, the animat can live in the

Créatúr habitat; the internal implementation of the animat does not maer. For

example, the animat might have a simple brain that makes decisions according to

hard-coded rules, or it might have a sophisticated brain that learns from experi-

ence.

98

5.2.2 Objects

e user can create one or more types of objects for the animats to interact with.

At the minimum, a “food” object is required (unless there are multiple animat

species forming a complete food ain). Ea object implementation must make

the features and operations listed below available to Créatúr.

• a sequence of numeric values representing the object’s description appear-

ance (see Section 5.3.1). e description field is used for logging. Delta

energy is positive for food, negative for poisonous objects.

• the energy gain (or loss) provided to an animat that eats the object.

• if other drives are implemented (e.g. boredom), the effect on those drives if

the animat ooses a particular action. Delta passion is usually positive to

discourage animats from aempting to mate with objects, instead encour-

aging animats to learn identify and mate with others of their species. Delta

boredom is positive for toys.

5.3 A closer look at Créatúr

5.3.1 Object encounters

Créatúr sedules encounters between animats and objects in the environment.

When it is time for an object encounter, Créatúr selects a random animat from

the population, and a random object from the set of available objects. It presents

the appearance of the object to the animat’s sensors (exteroception), along with

information about the animat’s current state and physical needs (interoception),

99

and reads the animat’s output signals to determine the course of action osen.

It then implements the pre-defined consequences of that action, and returns the

animat to the population. Some typical examples of consequences are listed below.

• If the animat ooses to eat the object, and the object is edible, give energy

to the animat.

• If the animat ooses to eat the object, and the object is poisonous, take

energy from the animat.

• If the animat ooses to play with an object, and that object is “interesting”,

reduce the animat’s boredom level.

• If the animat ooses to mate with an object, increase the animat’s passion

level. (is is useful for encouraging animats to learn identify others of their

species, and to mate with them rather than with objects.)

5.3.2 Animat encounters

Créatúr also sedules encounters between pairs of animats. When it is time for

an animat encounter, Créatúr selects two random animats from the population. It

then presents the appearance of ea animat to the other animat’s sensors (exte-

roception), along with information about its own current state and physical needs

(interoception), and reads the animats’ output signals to determine the course of

action osen by ea. It then implements the pre-defined consequences of that

action, and returns both animats (and any resulting offspring) to the population.

Some typical examples of consequences are listed below.

100

• If either animat wants to mate, it will lose some energy. is “flirting tax”

simulates the cost of courting. (e time invested in courting could have

been spent hunting for food instead.)

• If both animats want to mate, and the potential dam is not currently rearing

a ild, reproduction occurs. (See Section 5.3.3.)

• If potential sire wants to mate, but the potential dam is currently rearing a

ild, increase passion level of the potential sire. (Assuming that an animat’s

appearance indicates whether or not it is rearing aild, this might be useful

for encouraging animats tooosemates that aremore likely to be receptive.)

• If the animats oose to play with ea other, reduce their boredom levels.

(is might be useful for promoting more complex social interactions.)

5.3.3 Reproduction

Créatúr was designed to workwith diploid animats. Ea animat has two complete

sequences of building instructions, either one of whiwould be sufficient to create

an animat. By loose analogy with biology, an instruction is called a gene, and the

various seings for a particular instruction are called alleles. When two animats

mate, they ea donate one string of genetic material to the offspring. Again by

analogy with biology, we call this single string a gamete. To produce a gamete,

Créatúr makes copies of the two strings of genes from the parent, and performs

one or more of the operations listed below, in decreasing order of probability.

• crossover: breaking the strings at corresponding locations, and swapping the

tails

101

• cuing and splicing: breaking the sequences at non-corresponding loca-

tions, and swapping the tails, thereby ending up with two sequences of dif-

ferent length

• mutation: randomly altering a bit in in one of the sequences

Aerward, one of the two resulting sequences is randomly selected as the ga-

mete, and the other is discarded. e offspring receives one gamete from ea

parent, and thus ends up with two sequences of instructions. us, the offspring

contains a mixture of genetic information from both parents.

Since the two sequences of instructions in a diploid animat’s genome are gener-

ally not identical, before constructing the offspring the sequences are merged into

a single sequence of instructions whi we call the blueprint. As in biology, when

the genetic instructions at corresponding locations differ, one instruction may take

precedence over the other (i.e., has dominance), or the result may be a blending

of the two instructions (i.e., incomplete dominance). ese dominance relation-

ships are enforced by the animat implementation. e implementation provides a

method whi, given two alleles, applies the appropriate dominance relationship

and returns the resulting instruction for the blueprint. Créatúr invokes this method

for ea pair of genes, and compiles the blueprint. e animat implementation also

provides a method for constructing an animat from the blueprint. Créatúr invokes

this method to complete the process of reproduction.

5.3.4 Parenting

When mating occurs, one parent is arbitrarily osen to be the sire, and one the

dam. Both parents donate a fraction of their current energy to the offspring; aer

102

that, the sire’s role in parenting ends. e offspring remains with the dam until

maturity, and shares in its experiences, thereby learning some basic survival skills.

During this time, the dam shares a fraction of all energy gains or losses with the

offspring.

5.3.5 Créatúr Time

Créatúr maintains a program counter, called Créatúr Time. is counter is used

to sedule events. Créatúr is designed to run on a workstation that may be used

for other purposes at the same time. e advantage of using a counter rather than

system clo time is that it ensures that the availability of food and mating oppor-

tunities is not affected by the amount of processing time allocated to the Créatúr

daemon, or by stopping and restarting the daemon. It also allows meaningful com-

parison of experiments performed on computer systems with different hardware

and processing capacity.

5.4 Implementation and testing

In order to give the reader an idea of how Haskell and iChe were used in

the implementation of Créatúr, a short excerpt from the code will be presented

and discussed.¹ e Crossovermodule provides crossover operations, and is used

to create gametes for reproduction. is module resides in the Genetics paage.

e first step is declaring the module and the functions that are exported (visible to

other paages). e method randomCutAndSplice is a general form of crossover.

e method randomCrossover is a convenience method that can be used when

¹A complete code listing is available from the author.

103

both strings are cut at the same position. ese methods are both exported, along

with testModule, whi automatically tests the module.

module Genetics.Crossover

(

randomCutAndSplice,

randomCrossover,

testModule

) where

is module requires two library paages. iChe (Test.QuickCheck)

was introduced in Section 2.6.3. Control.Monad.Random provides a source of ran-

dom values.

import Control.Monad.Random

import Test.QuickCheck

Next, an internal function is defined that takes two strings and the positions at

whi they should be cut, cuts them, swaps the tails, and splices them to form two

new lists.

cutAndSplice :: Int -> Int -> ([a], [a]) -> ([a], [a])

cutAndSplice n m (as, bs) = (cs, ds)

where cs = as1 ++ bs2

ds = bs1 ++ as2

(as1, as2) = splitAt n as

(bs1, bs2) = splitAt m bs

As discussed in Section 2.6.2, the symbol :: is read ”has type” and introduces a

type specification. e type specification for a function is a list of the types of ea

104

input parameter, followed by the type of the output parameter, all separated by the

symbol ->. So the function cutAndSplice takes an Int, another Int, something

of type ([a], [a]), and returns something of type ([a], [a]).

But what is this cryptic-looking ([a], [a])? It may be easiest to read this

from the inside out, beginning with the symbol a. All types in Haskell begin with

a capital leer, so a cannot be a type. Instead, a is a type variable, a placeholder

indicating that we can use any type wewish for a. e notation [a] indicates a list²

of as, whatever a is. So [a] could be a list of Ints, Chars, or anything we wish.

(However, the same type must be used everywhere a appears in this function’s

specification.)

e notation (type1,type2) indicates a tuple, whi is a way to paage several

values as a single value. Unlike lists, the elements in a tuple do not generally have

to be of the same type. However, in this case the tuple has two elements, both of

type [a], and as explained above, the same type must be supplied for all instances

of a. So for the third parameter we could supply a value of type ([Int], [Int]),

or ([Char], [Char]), for example, but not ([Int], [Char]). Finally, the type

of the value returned by cutAndSplice will be the same type as that third input

parameter.

Créatúr uses cutAndSplice on byte strings (lists of bytes). However, there

is nothing in its implementation that depends in any way on the type of the list

elements. Because the specification uses a type variable rather than an explicit

type, the function cutAndSplice is polymorphic³ (can be used with any type).

²In other languages, the terms array or sequence might be used in place of list.
³In the author’s experience, most programming languages require extra effort on the part of the

programmer to create a polymorphic method. In Haskell, it is usually trivial to write a polymorphic
function.

105

Everything aer the first line is the function’s implementation. e operator

++ represents list concatenation, and the Haskell library function splitAt splits a

list at the specified position, returning the two halves. e implementation can be

read as a series of mathematical definitions. Given the input parameters n, m, and

(as, bs),⁴ the output is (cs, ds), where cs is formed by splicing the first part of

aswith the second part of bs, and ds is formed by splicing the first part of bswith

the second part of as. In other words, the result is the tuple

(a[0..n-1] ++ b[m..], b[0..m-1] ++ a[n..])

Remember, however, that functions in Haskell consist only of expressions and

definitions; there is no guarantee that the computations will be performed in any

particular order – except of course that if one expression depends on another, the

second expression will be evaluated first. In the function cutAndSplice, the def-

initions for as1, as2, bs1, and bs2 will be evaluated before cs and ds, but apart

from that, the order of evaluation is not fixed.

Table 5.1 provides examples of the use of cutAndSplice.

Table 5.1: Examples using cutAndSplice

Expression Result

cutAndSplice 2 5 ("abcdef", "ABCDEF") ("abF","ABCDEcdef")
cutAndSplice 3 1 ("abcd", "ABCDEFG") ("abcBCDEFG","Ad")
cutAndSplice 4 4 ("abcdef", "ABCDEF") ("abcdEF","ABCDef")

If n <= 0 or m <= 0, the corresponding list will be completely transferred to the

other, effectively exanging the position of the lists within the tuple. Table 5.2

provides examples.

⁴In Haskell, lists are oen given two-leer variable names where the second leer is s, su as
xs, pronounced “exes”.

106

Table 5.2: Examples using cutAndSplice with a zero or negative index

Expression Result

cutAndSplice 0 4 ("abcdef", "ABCDEF") ("EF","ABCDabcdef")
cutAndSplice (-2) 4 ("abcd", "ABCDEFGH") ("EFGH","ABCDabcd")

cutAndSplice 5 0 ("abcdef", "ABCDEF") ("abcdeABCDEF","f")

If n or m are greater than or equal to length of the corresponding list, that list

will not be transferred. Table 5.3 provides examples.

Table 5.3: Examples using cutAndSplice with an index greater than the length of
the input list

Expression Result

cutAndSplice 10 0 ("abcdef", "ABCDEF") ("abcdefABCDEF","")
cutAndSplice 0 0 ("", "ABCDEF") ("ABCDEF","")

Now the function randomCutAndSplice can be defined, whi invokes cutAndSplice

with random values. However, recall that functions in Haskell are referentially

transparent ; any expression can be replaced by its value without anging the be-

haviour of the program. In other words, given the same inputs, a function should

always return the same value. is is equivalent to saying that functions should

not have side effects. If randomCutAndSplice behaves randomly, it will violate

referential transparency.

Of course, a program completely without side effects would not be very use-

ful (it could not perform any I/O, for example). Haskell provides meanisms to

isolate side-effects, state data, and mutable data from the purely functional parts

of the program. is is accomplished through the use of monads,⁵ whi are pro-

⁵e name comes from the term monad in category theory.

107

gramming structures that represent computations. e main method in a Haskell

program runs in the IO monad, whi is the only context that allows I/O. In fact,

the IO monad is a sort of “anything goes” zone where the usual constraints are

relaxed.

A full explanation of monads is beyond the scope of this thesis; instead, the

function randomCutAndSplice will be used to illustrate the use of monads.

randomCutAndSplice :: (RandomGen g) => ([a], [a]) -> Rand g ([a], [a])

randomCutAndSplice (as, bs) = do

n <- getRandomR (0,length as - 1)

m <- getRandomR (0,length bs - 1)

return (cutAndSplice n m (as, bs))

e first line is the type signature for the function. As before, the lowercase

leers a and g are type variables, but in this case g cannot be just any type; it has

been constrained. e expression (RandomGen g) => can be read as “for all types

g, where g is an instance of RandomGen. And the expression Rand g ([a], [a])

means that instead of returning a value of type ([a], [a]), this function will

return a computation that can calculate the result. at may not seem to be mu

of an improvement, but in fact these computations can be ained together to

form more complex computations. Eventually this particular computation will

be evaluated in the main method of Créatúr, in the IO monad.

Everything aer the first line is the function’s implementation. e first thing

the reader will notice is that the syntax used in this function looks very different

than in previous functions. In fact, it looks like imperative code! is “do notation”

(note the word do in the function definition) allows a series of computations to be

ained together. e reader might guess what this function does, i.e.,

108

1. Assign a random value between 0 and the length of the first input list, minus

one, to n.

2. Assign a random value between 0 and the length of the second input list,

minus one, to m.

3. Invoke the function cutAndSplice with the values n, m, and the two input

lists, and return the value.

at description is essentially correct. However, the function return does not

cause the function to exit. In Haskell, return simply takes a normal value and

converts it into a computation that will return that value. A function using this

“do notation” will return a computation that executes the statements inside it in

sequence and returns the last expression in the sequence. In this example, the last

expression does contain the word return, but that is not always the case.

e next function defined in this module, crossover, is quite simple. It is

simply a convenience method that calls cutAndSplice using the input parameter

for both indices.

crossover :: Int -> ([a], [a]) -> ([a], [a])

crossover n = cutAndSplice n n

e function randomCrossover is very similar to randomCutAndSplice, except

that it uses the same random value for both indices.

randomCrossover :: (RandomGen g) => ([a], [a]) -> Rand g ([a], [a])

randomCrossover (as, bs) = do

n <- getRandomR (0,length as - 1)

return (crossover n (as, bs))

109

e use of iChe was illustrated in Section 4.8, so it will suffice to men-

tion the testable properties that were defined for this module. e first one states

that the sum of the lengths of the two strings is not altered by the cut-and-splice

operation.

prop_cutAndSplice_preserves_sum_of_lengths ::

Int -> Int -> (String, String) -> Property

prop_cutAndSplice_preserves_sum_of_lengths n m (as, bs) =

property $ length as' + length bs' == length as + length bs

where (as', bs') = cutAndSplice n m (as, bs)

e other property states that the sum of the lengths of the two strings is not

altered by the crossover operation.

prop_crossover_preserves_sum_of_lengths :: Int -> (String, String) -> Property

prop_crossover_preserves_sum_of_lengths n (as, bs) =

property $ length as' + length bs' == length as + length bs

where (as', bs') = crossover n (as, bs)

Finally, the testModule method invokes iChe to run all of the tests

defined for this module.

testModule :: IO ()

testModule = do

putStrLn $ ">>>>> Testing " ++

"Genetics.Crossover.prop_cutAndSplice_preserves_sum_of_lengths"

quickCheckWith (stdArgs { maxSuccess=1000, maxDiscard=100, chatty=True})

prop_cutAndSplice_preserves_sum_of_lengths

putStrLn $ ">>>>> Testing " ++

110

"Genetics.Crossover.prop_crossover_preserves_sum_of_lengths"

quickCheckWith (stdArgs { maxSuccess=1000, maxDiscard=100, chatty=True})

prop_crossover_preserves_sum_of_lengths

5.5 Summary

Créatúr is a reusable soware framework for automating experiments with artifi-

cial lifeforms. It automates tasks whi are independent of the animat species. e

user provides the implementation of the animats and other objects in the virtual

environment. Créatúr supports common behaviours su as eating, mating, and

playing; users can implement additional behaviours as needed. Créatúr places very

few constraints on the animat implementation; making this framework usable for

a wide variety of ALife projects.

Créatúr animats live in a world of data, and survive by discovering paerns.

e appearance of ea animat and object is a string of data, so finding food or

mating partners requires recognising paerns in that data. ere is no fitness func-

tion except survival. Animats and objects are selected at random and allowed to

interact. Créatúr animats are diploid, and are immature at birth. ey remain

with a parent and learn by observation until they are mature. e age of maturity

is genetically determined.

As will be seen in Chapters 6 and 7, the Créatúr framework has already been

used with two very different ALife species. Although this framework was de-

signed to support some novel approaes to ALife (using data as the environment,

framing data analysis as a survival problem, using multiple kinds of evolution, and

protecting the young while they learn), it could support a variety of ALife projects.

111

By encapsulating the functionality common to most ALife habitats and species, the

Créatúr framework can save development time.

112

Chapter 6

Dotes: an artificial lifeform

is apter describes the first of two aempts to aieve the resear objectives

outlined in Chapter 3. e animats used in this experiment are called dotes¹. ere

is one type of object for the dotes to interact with: berries, whi are a potential

food source defined by an RGB colour and the amount of energy that they pro-

vide when eaten. Some berries provide small negative amounts of energy, making

them mildly poisonous. (However, eating poisonous berries will only be fatal if

it reduces the dote’s energy to zero or below.) e implementation of dotes and

berries satisfies the requirements in Section B.2 with IDs beginning with “USR-”.

e structure of this apter is outlined below.

Section 6.1: e dotes describes the appearance of dotes, how they eat and lose

energy, mate, rear ildren, think, learn, and forget. It also describes the

extent to whi ea of these traits is genetically determined.

Section 6.2: Dote Genetics describes how dotes are constructed from their genes.

¹Dote (rhymes with coat) is a Hiberno-English term of endearment usually applied to ildren
or small animals.

113

Section 6.3: Implementation and testing presents excerpts from the code in or-

der to show how Haskell andiChe were used in the implementation.

e excerpts presented implement the learning rules used by neurons.

Section 6.4: Experimental set-up describes the procedure used when seing up

and running experiments with dotes.

Section 6.5: Results and Interpretation analyses the results obtained using dotes

in the Créatúr framework.

Section 6.6: Summary summarises the key points from this apter.

6.1 e dotes

6.1.1 Appearance

e appearance of a dote is an RGB colour (a triple containing values for red,

green and blue), whi is determined by the colour gene. When a dote encounters

another, the stimuli presented to its brain include the colouring of the second dote.

is information could help dotes judge how genetically similar they are, whi

could eventually allow them to judge how closely related they are to potential

mating partners, supporting kin selection or speciation.

6.1.2 Eating and metabolism

Dotes have an energy level, e, between 0 and 1. When a dote encounters a berry it

has the option to eat it or reject it. Eating results in an energy gain or loss; rejecting

114

a berry has no effect on energy. Once a dote’s energy reaes 1 it is full; continuing

to eat is not beneficial, but it is not harmful.

At regular intervals, dotes lose some energy through ametabolism tax, denoted

emetabolism and given by Equation 6.1. is metabolism tax is determined by the

complexity and processing requirements of the brain; this should prevent dotes

from evolving excessively large, inefficient brains. If a dote’s energy reaes 0, it

dies and is removed from the population.

emetabolism = eneuronnneurons + econnectionnconnections + ethinkingtthinking (6.1)

where

emetabolism is the metabolism tax

eneuron is the energy cost per neuron

nneurons is the number of neurons in the dote’s brain

econnection is the energy cost per neural connection

nconnections is total number of neural connections in the dote’s brain

ethinking is the energy cost per update of the brain state

tthinking is the number of brain updates the dote makes per decision

6.1.3 Mating

Dotes have a passion level, p, whi begins at 0 and gradually rises to a maximum

of 1 if the dote does not mate. When a dote encounters another dote, it has the

option to try to mate with it, or to ignore it. If it ooses to mate, it loses a small

amount of energy for the time investment of “flirting”; this might eventually en-

115

courage the animats to develop a strategy for identifying receptive mates. If both

partners oose to mate, the passion level of both dotes is set to zero and a ild is

produced. e actual process of reproduction was described in Section 5.3.3.

6.1.4 Child rearing

Mating always results in a ild. At birth, ea parent donates a fraction of its

current energy to the ild. In addition, the dam donates a fraction of all its energy

gains or losses from food to the ild until the ild is mature. In both cases, the

fraction is specified by the devotion gene.

Aer a ild is born, it remains with the dam until the ild is mature. During

this time, it shares in the dam’s energy gains or losses from food, receives the same

external stimuli as the dam, and learns from those experiences. e age of maturity

is specified by the maturation time gene.

6.1.5 inking

A dote brain is an unstructured, heterogeneous, neural network. e number of

neurons is determined by the start neuron genes and end neuron genes. At birth,

the output level of every neuron in the brain is set to a random value.

All connections between neurons are one-way, but a pair of connections can be

used to facilitate bi-directional communication between neurons. Cycles within

the network are permied. e number of neurons, and the learning rule and

forgeing rule of eaneuron are determined genetically, and do notange during

a dote’s lifetime. In addition, the genome specifies a “starter set” of connections

between neurons, although these connections can be broken and new ones formed

116

as a dote learns from its environment.

A connection has aweight parameter; when a neuron updates, it sets its output

to the weighted sum of its inputs (i.e., the activation is the identity function). e

weight of a connection is initially set to 0.1, and is regularly adjusted according to

the target neuron’s learning rule. Table 6.1 identifies the neuron allocation.

Table 6.1: Neurons in the dote brain

neuron purpose

0 output for eat/don’t eat decision
1 output for mate/don’t mate decision
2 output, reserved
3 output, reserved
4 output, reserved

5-12 input, object code
13-15 input, object colour
16+ hidden neurons

Every time a dote encounters something in the environment, an input vector

is presented to the neural network whi then runs for a number of cycles to select

a response. is input vector includes the appearance of the object, and the dote’s

current energy and passion levels. Ea element of the input vector is a value

between 0 and 1. During ea cycle, every neuron in the brain updates its weights

based on the inputs from the neurons to whi it is connected, according to a

learning rule. e learning rule, forgeing rule, and operational parameters of

ea neuron are determined genetically. e number of cycles is specified by the

thinking time gene.

Inspired by the theory of Neural Darwinism, neural connections are generated

and pruned by an evolutionary process. Aer ea decision made by a dote, two

117

neurons are osen at random, and a connection is built from one to the other if it

doesn’t already exist. A connection has a health parameter, whi represents the

estimated usefulness of that connection. e health of a connection is initially set

to 1, and is regularly adjusted according to the target neuron’s forgeing rule. If

health reaes zero, connection is pruned.

e connection source gene is used to pre-wire the brain of a newborn dote

Connections built in this way are subject to the same forgeing rules as connec-

tions created later.

6.1.6 Learning

A learning rule is the means by whi an artificial neuron adjusts the weights

between itself and other neurons (or direct inputs). e learning rule gene deter-

mines the learning rule used by ea individual neuron. Two forms of Hebbian

Learning (as discussed in Section 2.4.1) are supported: Oja’s Rule and Hebb’s Rule.

Because Hebb’s rule is unstable, it was not used in constructing starter populations.

However, it is an available allele in the dote genome, and mutation could cause it

to be selected for. It is conceivable that evolution will find a use for it; therefore

the option was made available.

An additional learning rule, called “No Learning”, instructs the neuron not to

make any weight adjustments (although it can still form new connections). is

rule was developed for testing; it was not used in starter populations. However,

mutation could cause it to be selected for.

118

6.1.7 Forgetting

Aer a dote “thinks” (i.e., processes sensory inputs and makes a decision), two

neurons in its brain are osen at random, and a connection is created between

them. A forgeing rule is the meanism by whi connections that turn out to

be useful are preserved, while those that turn out not to be useful are pruned.

A connection is useful if the outputs of the two neurons involved are strongly

correlated (either negatively or positively).

e usefulness of a connection is represented by a parameter called its health.

Initially, all connections start with a weight of 0.1 and a health of 1. e health of

a connection is updated every time it is read.

e forgeing rule gene determines the forgeing rule used by ea individual

neuron. Under the basic forgeing rule, a connection gains health by having a

weight that is close to either 0 (indicating a strong negative correlation) or 1 (in-

dicating a strong positive correlation). A connection loses health by being close to

0.5, because that indicates that there is lile correlation between the neurons. e

formula used is given by Equation 6.2.

h′ = h+ ρ
[
4 ∗

(
w − 1

2

)2
− h

]
(6.2)

where h is the current value of the connection health, h′ is the updated value,

ρ is the forgeing rate, and w is the weight associated with this connection by the

target neuron.

An alternative forgeing rule, called “No Forgeing”, instructs the neuron

never to prune any of its connections (although it can still form new connections).

is rule was developed for testing; it was not used in starter populations. How-

119

ever, mutation could cause it to be selected for.

6.2 Dote Genetics

Because the focus of this resear was the brain, dotes have a very simple body

and metabolism, and most of the dote genetic traits relate to the brain. e dote

genome consists of instructions encoded as a series of bytes. e encoding seme

is explained in Appendix C. Any byte that cannot be interpreted as part of one

of the other gene sequences will be treated as a no-op instruction, whi has no

effect. is ensures that all gene sequences are valid, and can be used to construct

a dote.

6.2.1 Genetic dominance

As discussed in Section 5.3.3, dominance relationships must be defined to handle

the situation when the alleles at corresponding locations in the two gene sequences

differ. For most homologous gene combinations, a type of genetic blending was

implemented by taking the average of the two values. eminimumof the two val-

ues for the connection source gene is used in the hope that it will result in smaller,

more efficient brains. e merging of two learning rule genes depends on the rules

they specify; Oja’s Rule takes precedence over all rules, and “No Learning” takes

precedence over Hebb’s Rule. More detailed information about the dominance

relationships is provided in Section C.2.

120

6.2.2 Dote assembly

e tenique for constructing a dote from its genome is inspired more by a factory

assembly line than by biology. e instructions in the blueprint are followed one

by one, as described in Table 6.2. Aer the dote is assembled, the neurons in its

brain are set to random values.

6.3 Implementation and testing

In order to give the reader an idea of how Haskell and iChe were used

in the dote implementation, some excerpts from the code will be presented and

discussed.² ese excerpts implement the learning rules used by neurons. e

first step is to define the LearningRate type, whi is just a synonym for Double.

Learning rates should normally lie in the closed interval [0, 1]. However, this range

is not enforced; evolution may find it useful to exceed these ranges in some cases.

type LearningRate = Double

As discussed in Section 6.1.6, three learning rules are currently implemented:

Hebb’s rule, Oja’s rule, and a “No Learning” rule. (Only Oja’s Rule was used in

the starter population.) So there are three constructors for LearningRule, one for

ea of the rules. e constructors for Hebb’s Rule and Oja’s Rule both take one

parameter of type LearningRate. e “No Learning” rule constructor does not

take any parameters. e notation deriving (Eq, Show, Read) allows the type

to inherit standard functions for equality, display, and parsing.

data LearningRule

²A complete code listing is available from the author.

121

Table 6.2: Genes interpreted as instructions for assembling a dote

Instruction Action

devotion
gene

Set the dote’s devotion to any future offspring to the specified
value (possibly overriding a previous seing).

maturation
time gene

Set the time the dote spends with its dam to the specified
value (possibly overriding a previous seing).

start
neuron
gene

If a neuron is currently being assembled, but has not been
added to the brain, discard it. Begin a new neuron and set
the learning rule to the same value as used for the previous
neuron. (If this is the first neuron, use Oja’s Rule with a rate
of 0.1.) Set the forgeing rule to the same value as used for
the previous neuron. (If this is the first neuron, use the basic
forgeing rule with a rate of 0.01.)

learning
rule gene

If a neuron is currently being assembled, set the learning rule
for the current neuron to the specified value (possibly over-
riding a previous seing). Otherwise, ignore the instruction.

forgeing
rule gene

If a neuron is currently being assembled, set the forgeing
rule for the current neuron to the specified value (possibly
overriding a previous seing). Otherwise, ignore the instruc-
tion.

connection
source gene

If a neuron is currently being assembled, create a connection
from the neuron at the specified index to the current neuron.
Otherwise, ignore the instruction. (If the index is greater
than than n − 1, where n is the final number of neurons in
the brain, the connection is invalid and will eventually be
pruned.) Only the source of the connection is specified by
the gene; the neuron currently being defined is always the
target.

end neuron
gene

If currently building a neuron, add it to the list of finished
neurons. Otherwise, ignore the instruction.

colour gene Set the dote’s colouring to the specified value (possibly over-
riding a previous seing).

thinking
time gene

Set the time the dote spends thinking about a decision to the
specified value (possibly overriding a previous seing).

no-op gene Take no action.

122

= Hebb LearningRate

| Oja LearningRate

| NoLearning deriving (Eq, Show, Read)

e function updateWeight has a different implementation for ea of the

learning rules. It takes a learning rule, an output signal, an input signal, and a

connection weight, and returns an updated weight. When updateWeight is called,

one of the three implementations will be osen by performing paern mating

on the learning rule. e notation (Hebb r) will mat a value that was created

using the Hebb’s Rule constructor. If it mates, the symbol r will be assigned

the learning rate, and the expression on the right side of the equals sign will be

evaluated and returned. e reader may find it helpful to compare the code with

Equations 2.1 and 2.2. Note that this code uses r in place of η for the learning rate.

updateWeight

-- | The learning rule

:: LearningRule

-- | The current value of the output signal

-> Signal

-- | The current value of the input signal

-> Signal

-- | The current weight

-> Weight

-- | The updated weight

-> Weight

updateWeight (Hebb r) y x w = w + r * x * y

updateWeight (Oja r) y x w = w + r*y*(x - y*w)

123

updateWeight NoLearning _ _ w = w

e next set of examples illustrates one of the tests that was run on the code

above. AlthoughiChe will generate random test data, there are situations

where greater control over the test inputs is required. Fortunately, it is easy to

define custom generators for test data. For example, as mentioned above, learning

rates should normally lie in the closed interval [0, 1]. is range is not enforced,

but many of the properties that we’d like to test will only work if the learning

rate is in this range. e code below first defines the interval, and then creates a

generator called arbLearningRate that will select random values in that interval

using the choose function.

e notation :: (LearningRate, LearningRate) tells Haskell that we want

the value (0, 1) to be interpreted as a tuple containing two values of type LearningRate

as opposed to, say, two Ints or two Doubles.

learningRateInterval = (0, 1) :: (LearningRate, LearningRate)

arbLearningRate = choose learningRateInterval

Similarly, a generator called arbWeight selects suitable test values for the con-

nection weights.

type Weight = Double

weightInterval = (0,1) :: (Weight, Weight)

arbWeight = choose weightInterval

As mentioned in Section 2.4.1, Hebb’s Rule is unstable, therefore we want to

avoid using it for most tests. e following code creates a generator that only

returns instances of Oja’s Rule, with arbitrary learning rates produced by the

arbLearningRate generator defined above.

124

instance Arbitrary LearningRule where

arbitrary = do

rate <- arbLearningRate

return $ Oja rate

With those definitions, we can now verify that the implementation of updateWeight

satisfies one of the expected properties. If the input and output values are corre-

lated, Oja’s Rule should increase the connection weight – unless it is already set to

1. at property is tested by the following code. e last line can be read as “for an

arbitrary weight w, either the expression updateWeight l 1 1 w is greater than

w, or w is equal to one”.

prop_potentiation_happens11 :: LearningRule -> Property

prop_potentiation_happens11 l =

forAll arbWeight $ \w -> updateWeight l 1 1 w > w || w == 1

6.4 Experimental set-up

is section describes the procedure used when seing up and running experi-

ments with dotes.

6.4.1 Generating a starter population

For ea trial, between 200 and 1000 gene sequences in the order specified in Figure

6.1 were generated. e brain size for the initial population was set to 30 neurons,

based on an assumption that this would be sufficient for evolution to construct a

reasonably accurate, if inefficient, neural network. e number of initial connec-

125

tions was set to 0 or 1, osen at random. All other gene parameters wereosen at

random from their respective domains. Ea gene sequence was duplicated and a

dote was constructed from the resulting pair of (identical) sequences. ese dotes

formed the starter population for a trial run of Créatúr.

Figure 6.1: Gene sequence of starter population

As the program ran, the population size and the number of births were moni-

tored. If it seemed unlikely that the population would become self-sustaining (i.e.,

that the population size would remain above the pre-set minimum), logs were anal-

ysed to determine the main factors leading to dote deaths, and a starter population

that might be more viable was generated for the next trial.

6.4.2 Configuring the Ecosystem

e dote configuration file allows the user to specify the items listed below.

• the directory containing the population

• the username the daemon will run as

• the minimum population level

• the number of neurons any artificially-generated (i.e., not born) dotes will

have

126

• the interval between metabolism tax levies, in number of Créatúr clo tis

• the energy requirement per neuron

• the energy requirement per neural connection

• the energy requirement per brain update

• the energy gained by eating edible berries

• the energy lost by eating poisonous berries

Choosing good configuration values is not an easy task. If nutrition is too

plentiful, the dotes won’t be forced to learn to identify edible berries; they can

compensate for the poisonous berries they eat by eating more berries overall. But

if nutrition is too scarce, the dotes may die out before they can evolve the skill to

identify edible berries. Once the dotes can reliably avoid poisonous berries, if the

amount of nutrition from edible berries offered meets their metabolic needs, then

the population will be stable. is section describes the configuration strategy that

was used.

Assume that the goal is to have a stable target population of n dotes. e

metabolism tax is set to be applied every n tis of the Créatúr clo. Ideally, the

dotes would eat all of the edible berries that are offered to them, and avoid all of the

poisonous berries. In that situation, assuming that the population size mates the

metabolism cycle, ea dote will be offered, on average, one berry per metabolism

cycle. However, only 50% of berries are edible. In order to balance the energy from

the edible berries against the metabolism costs,

ēmetabolism ≈ 1

2
e+berry (6.3)

127

where �emetabolism is the average metabolism tax paid by a dote (see Equation

6.1), and e+berry is the energy provided by a edible berry. (In this equation, it is

assumed that the dote only eat edible berries.)

e exact values are not critical; what maers is that the equation balances.

However, dotes will receive a berry every other metabolic cycle on average; they

must be able to survive several cycles without food. A dote’s maximum energy is

1, so seing �emetabolism = 0.1 is a good compromise, whi would require e+berry =

0.2. is should be suitable once the dotes have adapted to their environment. In

the beginning, however, they will not distinguish between the different types of

berries. It is necessary to give them extra energy so that the ones that are slightly

beer at the task can live long enough to reproduce. A value of e+berry = 0.4 ensures

that somemembers of the starter population survive long enough to have offspring

and rear them to maturity.

Returning to the metabolism tax, we have from 6.1,

0.1 = eneuronnneurons + econnectionnconnections + ethinkingtthinking (6.4)

e first goal was to get a viable population that had adapted to the berry task.

Based on the allocation in Table 6.1, it was estimated that evolution would be able

to construct a reasonably accurate, if inefficient, neural network using 30 neurons,

with approximately 50 connections, and 25 updates. Somewhat arbitrarily, the

values listed below were osen for most of the trials.

eneuron = 0.000033

econnection = 0.0000033

128

ethinking = 0.00034

Given the metabolic “budget” of 0.1, this would allow for a generous 100 neu-

rons, 500 connections, and 255 update cycles. All of the configuration parameters

were osen with the intent to make it easy for the first generation to survive and

produce offspring. Once that was aieved, the Créatúr daemon was halted, the

configuration anged to make the environment slightly more allenging, and

then the daemon was restarted using the same population. As ea trial ran, the

population was monitored for signs that the dotes were learning to distinguish

between poisonous and non-poisonous berries.

6.5 Results and Interpretation

is section summarises the results obtained for dotes running in Créatúr, and then

analyses the data from the last trial.

6.5.1 Summary of results from early trials

In an early trial, the maturation time gene was set to a random value in the range

0 to 25,535. e logs showed that offspring remained with their parents so long

that they were an excessive drain on the parent’s resources, resulting in the death

of both parent and ild. In subsequent trials, the range of the age of maturity in

the starter population was capped at 200 to reduce this problem. is only directly

affected the starter population; it would still have been possible for evolution to

eventually drive the value above 200.

A trial with a single dote demonstrated that it could learn a training signal

129

with supervised training, as shown in Figure 6.2. A simple signal representing a

ripe berry was presented to the neural net, and the network was allowed to update.

e process was repeated 10 times. e colour indicates the output level of ea

neuron, at ea time step. At time zero, the neurons have a wide range of output

levels because they were initialised to random values. e neuron representing the

eating decision has a low output initially (indicating “no”) but eventually produces

a high output (indicating “yes”).

Dotes ate edible berries and poisonous berries in similar proportions; this in-

dicates that they had not learned to distinguish between the two types. Figure 6.3

shows the results from the final run; earlier runs produced similar results. A se-

ries of anges was made to the configuration seings and the genetic make-up of

starter population. Dotes continued to eat edible and poisonous berries in similar

proportions; indicating that they had not learned the difference.

Making the environment harsher (by making the poisonous berries more poi-

sonous) did not trigger berry discrimination. Instead, the population fell below the

pre-set minimum (at whi point new random dotes are generated and added to

the population) and showed no sign of recovery. Figure 6.4 shows the results from

the final run; earlier runs produced similar results.

Because the neural nets that form the dotes’ brains are unstructured, many

had connections that terminated at input neurons. As a result, the inputs would

oen be modified as the dote “thought”. is behaviour can be seen in Figure 6.2.

Originally it was hoped hoped that evolution would either select against this type

of configuration, or find a way to make use of it. Perhaps it would have happened

eventually, but since no signs of learning were observed, the brain was modified

so it would rewrite the input signal at every update. A population with this new

130

Figure 6.2: Supervised training of a dote’s brain

131

Figure 6.3: Dote eating paerns over time

132

Figure 6.4: Dote population as a function of time. e red line indicates the mini-
mum population level. If the population falls below this level, new dotes are ran-
domly generated and added to the population.

133

feature was evolved, but it did not demonstrate any ability to distinguish between

edible and poisonous berries.

Initially, the neural nets that formed the dotes’ brains received no training.

It was hoped that evolution would wire some sort of “reflection” circuit into the

brain, so that the dotes would learn from their mistakes. Whether or not this

would have occurred eventually, the analysis showed no sign that any of the dotes

were learning. erefore, a limited type of training was implemented. Aer a

dote eats something, it should know aerwards if that was a good decision or bad

decision (based on whether it gained or lost energy). e dote implementation

was modified so that aer eating, the neural net would be trained for a few cycles

with that information. No training occurred if the dote ose not to eat (because it

would be biologically unrealistic for the dote to know the outcome of an action not

taken). A population with this new feature was evolved, but the dotes continued

to eat edible and poisonous berries in similar proportions, indicating that they did

not learn to distinguish between them.

6.5.2 Results from final trial

is was the last trial performed with dotes. e version of the soware used for

this trial incorporated all of the anges described in Section 6.5.1. e set-up for

this trial is shown in Table 6.3.

Figure 6.3 shows the eating paerns of the dotes in the final trial. e results

are typical of those obtained in trials in whi an aempt was made to force the

dotes to learn by imposing an energy penalty for eating a poisonous berry. Half

of the berries offered to the dotes were edible, half poisonous. e dotes showed

134

Table 6.3: Set-up for final trial with dotes

item value

initial population 500

minimum population 100

numNeurons 30

metabolic cycle 1000 tis

eneuron 3.3e-4

econnection 3.3e-6

ethinking 3.4e-4

e+berry 0.4

e−berry -0.1

no preference in their eating paerns, indicating that they did not learn to distin-

guish between edible and poisonous berries. Furthermore, even though the penalty

was low compared to the potential energy reward from an edible berry, the dotes

tended to avoid eating altogether. During the time shown, only one ild survived

to maturity.

Figure 6.4 shows that the population did not become stable. Instead, it plum-

meted rapidly, and showed no signs of recovery.

e elders

At the time the experiment was stopped, five dotes from the starter population of

500 were still alive: 86 pi, 97 pi, 308 pi, 391 pi, 455 pi. (e surname “pi” indicates

the name of the population.) For convenience, these dotes are called the “elders”.

How did they remain alive so long? Table 6.4 compares some statistics about the

elders to the population averages, providing clues to the answer.

135

Table 6.4: Elder dotes

86 pi 97 pi 308 pi 391 pi 455 pi avg pop.
avg.

Age 197 197 197 197 197 197 44.62

Energy 0.3714 0.9 0.1084 0.7 0.1747 0.4509 0.5356

Time since
last mated

3399 3411 3403 3315 3423 3390.2 841.11

inking
time

0 0 4 0 3 1.4 75.46

Neurons 30 30 30 30 30 30 30

Connections 896 898 899 896 896 897 451.51

Metabolism 0.003947 0.003950 0.005317 0.003947 0.004967 0.004425 0.02817

On average the dotes in the population had mated approximately 841.11 clo

tis ago, whereas the elders last mated approximately 3390.2, a four-fold increase.

is might seem to suggest that the elders mate far less oen, and therefore spend

less time rearing ildren and sharing food with them. However, the “time since

last mating” counter is zero when a dote is born or randomly generated. e age

of the elders was 197 clo tis, over four times the average age of a dote (44.62).

Most dotes in the population were too young to have mu of a mating history, so

there is no evidence that the elders actually mate less oen, or that this contributes

to their longevity.

e row labelled “thinking time” indicates the number of brain updates that the

dotes perform when making a decision; it provides a beer clue to the longevity

of the elders. e average dote performs 75.46 brain updates for ea decision,

but elders 86, 97, and 391 perform no brain updates at all, and elders 308 and 455

only perform 4 and 3 updates, respectively. e elders had functioning brains; they

simply weren’t using them. Substituting the values from Table 6.3 into Equation

136

6.1, we have

emetabolism = (0.00033)nneurons + (0.0000033)nconnections + (0.00034)tthinking

(6.5)

Since the metabolic cost is largely based on the number of brain update cycles,

the elders’ metabolic costs are extremely low. As can be seen in the last row of

Table 6.4), the metabolic cost for elders is 0.004425 on average, (approximately

one-sixth of the population average of 0.02817). Since ea dote begins life with

an energy of 1, we would expect the elders to live a fairly long life even without

eating, as shown in Equation 6.6. Indeed, an analysis of the logs showed that elders

86, 308, and 455 never eat.

lifespan =
1

0.004425
= 225 ticks (6.6)

By contrast, elders 97 and 455 eat every berry offered. As shown in Table 6.3,

edible berries provided 0.4 units of nutrition, while poisonous berries provided -0.1

units. Edible and poisonous berries were available in equal amounts, resulting in

an average energy gain of 0.15 units per berry. is explains why elders 97 and

455 have mu higher energy levels than elders 86, 308, and 455.

6.6 Summary

e key points about the dote implementation are summarised in this section, with

references to the section in whi the topic was discussed.

e appearance of a dote is an RGB colour, whi is genetically determined

137

(6.1.1). e objects in the dote universe include berries and other dotes. Berries are

edible or poisonous according to their RGB colour (6.1.2). When a dote encounters

an object, the appearance of that object is presented to the dote’s senses, along

with information about the dote’s current state (6.1.5). It can then oose to eat

(6.1.2) or aempt to mate with (6.1.3) the object. Aer a ild is born, it remains

with the dam until it is mature (6.1.4).

A dote brain is an unstructured, heterogeneous, neural network (6.1.5). e

number of neurons, their learning rules, and their forgeing rules are all geneti-

cally determined. e hope was that evolution would design a suitable brain from

the components provided. Dotes did learn to mate successfully and eat regularly,

but have been unable to raise ildren to maturity (6.5.2). However, in the exper-

iments performed thus far, dotes have not learned to distinguish between edible

and poisonous berries.

e first objective was to produce a stable population of dotes with the ability

to identify paerns in data. e partly random nature of evolution makes it im-

possible to know in advance how long it will take to find an acceptable solution, or

if it will ever succeed under the conditions provided. Extremely slow progress can

be indistinguishable from la of progress. However, it did not seem likely that

dotes would aieve this objective in the time alloed for this resear.

Aer reviewing the results, the author concluded that it would be more prac-

tical to create a functional brain, and let evolution improve on it. erefore, the

second aempt to aieve the resear objectives outlined in Chapter 3 used a new

ALife species was designed, with a new brain. is second aempt is described in

Chapter 7.

138

Chapter 7

Wains: an artificial lifeform

isapter describes the second of two aempts to aieve the resear objectives

outlined in Chapter 3. is aempt featured a newALife species, with a new brain.

ere are two types of objects in the universe, listed below.

• Wains, an artificial life form.

• Numerals, a potential food source or toy whi consists of a 28x28 grey-scale

image of a handwrien numeral. Ea numeral has different aracteristics

and uses.

e implementation of wains and numerals satisfies the requirements with

IDs beginning with “USR-”, in Section B.2. For the convenience of a reader who

may be more interested in this implementation, no knowledge from the previous

apter is assumed. As a result, there is some repetition of information. ose

who have read the previous apter will find Table 7.1 useful; it summarises the

key differences between dotes, the animats used in the previous experiment, and

139

wains, the animats used in this experiment.¹

Table 7.1: Key differences between dotes and wains

dotes wains

Dotes can eat, mate with, or ignore
things in their environment.

Wains can eat, mate with, play with,
or ignore things in their environ-
ment.

e food source is berries. e food source is handwrien nu-
merals.

When a dote encounters an object, it
receives sensory information about
the class of the object (berry or dote)
in addition to the object’s appear-
ance.

e only sensory information that
the wain receives is the object’s ap-
pearance.

e appearance of a dote or a berry
is an RGB triple.

e appearance of a wain or a nu-
meral is a 28x28 grey-scale image.

Dotes have two internal senses: en-
ergy level and time since last mated.

Wains have three internal senses:
hunger level, boredom level, and
passion level.

e brain has an ad hoc structure,
designed over generations by evo-
lution. Also, during one individual
dote’s lifetime, connections are cre-
ated and pruned by an evolutionary
process.

e brain design is fixed, but some
parameters are evolve over genera-
tions. Also, during one individual
wain’s lifetime, paerns are created
and pruned by an evolutionary pro-
cess.

e structure of this apter is outlined below.

Chapter 7.1: e wain describes the appearance of wains, how they eat and lose

energy, mate, rear ildren, play, learn, and make decisions. It also describes

the extent to whi ea of these traits is genetically determined.

¹Wain (rhymes with mean or rain) is a word for “ild”, commonly used in Donegal and North-
ern Ireland.

140

Chapter 7.2: Wain Genetics describes howwains are constructed from their genes.

Chapter 7.3: Implementation and testing presents excerpts from the code in or-

der to show how Haskell andiChe were used in the implementation.

e excerpts presented implement part of the brain.

Chapter 7.4: Experimental set-up describes the procedure used when seing up

and running experiments with wains.

Chapter 7.5: Results and Interpretation analyses the results obtained usingwains

in the Créatúr framework.

Chapter 7.6: Summary summarises the key points from this apter.

7.1 e wain

7.1.1 Appearance

e appearance of a wain is an 28x28 grey-scale image; the value of ea pixel is

specified by an appearance gene. e appearance of the wains in the starter pop-

ulation is shown in Figure 7.1a; this shape was designed to be easy for the wains

to distinguish from numerals. Wains learn to identify others of their species by

their appearance. (To clarify, they only learn to distinguish between objects that

are suitable for mating with, and objects that are not.) Because a wain’s appear-

ance is genetically determined, wains could eventually learn to judge how closely

related they are to potential mating partners. If the wain is currently raising a

ild, a small temporary modification is made to the wain’s image, as shown in

141

Figure 7.1b. is could eventually help wains identify mates that are likely to be

receptive.

(a) Default (b) While rearing a ild

Figure 7.1: Appearance of wains in the initial population. Note the additional
white pixels in the upper le of (b).

Over time, mutation will cause the appearance of some wains to differ from

that of the initial population. e appearance of wains will provide a rough guide

of the genetic variance in the population. If eventually they were to diverge into

separate species, wains would be able to distinguish between their own kind and

the “other” in the same way they distinguish between numerals. For example, the

new species might look like an X with an added curlicue, or with an incomplete

“arm”.

7.1.2 Eating and metabolism

Wains have an energy level, e, between 0 and 1. In some contexts the hunger

level, h, where h = 1 − e, is more convenient to use. Some numerals are edible;

eating them provides energy to a wain. Others are mildly poisonous; eating them

decreases a wain’s energy. (However, eating poisonous food will only be fatal if

it reduces the wain’s energy to zero or below.) If a wain rejects a numeral, it will

142

not receive the energy gain (or loss). Since a numeral can be both a food item and

a toy, as described in Section 7.1.5, the wain’s oice of action should depend on

both how hungry it is and how bored it is.

Once a wain’s energy reaes 1 it is full; continuing to eat is not beneficial,

but it is not harmful. At regular intervals, wains lose some energy through a

metabolism tax, denoted emetabolism and given by Equation 7.1. is metabolism

tax is determined by the complexity and processing requirements of the brain;

this prevents wains from evolving excessively large, inefficient brains. If a wain’s

energy reaes 0, it dies and is removed from the population.

emetabolism = eiq(nex + 10npat + nint) (7.1)

where

emetabolism is the metabolism tax

eiq is a multiplier relating the brain complexity to its metabolic costs

nex is the number of external inputs to the wain’s brain

npat is the maximum number of paerns the wain’s brain can differentiate

nint is the number of internal inputs to the wain’s brain

7.1.3 Mating

Wains have a passion level, p, between 0 and 1. When a wain encounters another

wain, if itooses tomate, it loses a small amount of energy for the time investment

of “flirting“. If both partnersoose tomate, and the wain that is randomly selected

to be the dam is not currently rearing a ild, the passion level of both wains is set

143

to zero and a ild is produced. e actual process of reproduction was described

in Section 5.3.3.

7.1.4 Child rearing

Mating always results in a ild. When two adults mate, ea donates a fraction of

its current energy to the resulting ild. In addition, the dam donates a fraction of

all the food it eats to the ild until the ild is mature. In both cases, the fraction

is specified by the devotion gene.

Aer a ild is born, it remains with the dam until it is mature. e age of

maturity is specified by the maturation time gene. During this time, it shares in

the dam’s food. It also builds a set of paerns based on its experiences, as will be

described in 7.1.7. However, it does not make decisions, or learn from mistakes,

until it is mature.

7.1.5 Play

Wains have a boredom level, b, between 0 and 1. A wain’s boredom level is in-

creased slightly, by a user-configurable amount, at the same time the metabolism

tax is applied. Some numerals are fun; playing with them reduces the wain’s bore-

dom. Others are boring; they either increase the wain’s boredom or have no ef-

fect. Wains are configured to find ea other slightly boring so that mating will

be a more aractive option than playing. Ignoring a numeral or another wain has

no effect on boredom. Since a numeral can be both an edible food and a toy, the

wain’s oice of action should depend on both how hungry it is and how bored it

is.

144

Once a wain’s boredom reaes 0, continuing to play is not beneficial, but it is

not harmful. A bored wain will not experience any ill-effects; the option to play

with objects was merely introduced to give the wains a rier life, whi might

drive evolution to produce beer brains.

7.1.6 Brain Structure

e brain structure for wains was designed in advance; evolution was allowed to

fine-tune the parameters and discover the factors that should influence a wain’s

decisions. e brain consists of two parts, a classifier and a decider, as illustrated in

Figure 7.2. It receives the external inputs to the wain’s senses, and categorises the

input vector as belonging to one of the paerns that the wain knows. e decider

ooses the course of action based on the paern ID, along with the wain’s internal

status. ese components are described below in more detail.

Figure 7.2: A sematic diagram of a wain brain.

145

7.1.7 Learning patterns

Awain may receive tens of thousands of unique input vectors during its lifetime; it

must be able to discover and recognise paerns in order to develop general guide-

lines for making decisions. is is the job of the classifier, whi is a modified

Kohonen SOM (Self-Organising Map). Two modifications were made to the SOM.

One was to periodically erase the least useful node so that it can learn a new pat-

tern, thereby implementing a type of Neural Darwinism; this will be discussed

shortly. e other modification sacrifices the topology-preserving feature of the

SOM to allow faster processing. In a traditional SOM (described in Section 2.4.2),

once a winning node has been selected, its weights, and those of its neighbours, are

updated. In the modified SOM used in wains, only the winning node is updated.

is allows for faster processing; however the resulting map does not preserve the

topology of the input data. In this case, the goal is for wains to discover paerns in

handwrien numerals, not to decide whether a handwrien two is more similar

to a nine or a three. e modified SOM was designed to be as simple as possible,

while still performing the task of identifying paerns in data.

e brain receives two types of inputs: internal and external. e number of

external inputs is specified by the exteroception capacity gene. When deciding

how to react to its environment, a wain must also take into account its own status.

is internal data includes factors su as the wain’s current hunger, passion, and

boredom levels. e number of internal inputs is specified by the interoception

capacity gene.

Although the classifier is working with images of handwrien numerals and

other wains, there is no requirement that objects be classified into exactly 11 pat-

146

terns (10 for the digits from 0 to 9 and 1 for wains). e number of paerns that

a wain can recognise is specified by the paern capacity gene. e goal is for the

animats to discover and remember paerns that are useful to their survival, not to

implement a numeral recognition system. For example, a wain might identify two

separate paerns for the numeral 2; one wrien with a loop (see Figure 7.3a), and

one without (see Figure 7.3b).

(a) With loop (b) Plain

Figure 7.3: Samples of different styles of the numeral 2, from the MNIST database.

Evolution is free to create wains with as many paerns as desired. However,

the metabolism tax is partly based on the number of paerns; this should prevent

the evolution of excessively large, inefficient brains. Eawain encounters numer-

als in a different order, so one wain might identify all handwrien 3s as paern

#7, while another wain identifies them as paern #2.

When a wain is born, it has no experience of the world, and therefore it must

be able to learn paerns very quily. e paerns that a wain recognises in its

environment are fluid categories whi shi or become broader or narrower ac-

cording to the inputs that the wain receives during its lifetime. e rate at whi

the SOM modifies ea paern node is specified by the paern learning rate gene.

Later in life, the wain has a workable set of paerns that have helped it to

147

survive. It must continue to learn, but it would not be practical to make dramatic

anges to its view of the world based on one experience. For this reason, the

paern learning rate should decay over time. is rate of decay is specified by the

paern learning rate decay gene.

e number of paerns that a wain can remember is limited. If a paern turns

out not to be useful, it may be beer to forget it and start fresh. e number of

mates for ea paern is traed. At intervals of specified by the Edelman cycle

gene,² the least useful paern (the one that has the fewest mates) is discarded,

and the node is randomised so that it can learn a new paern. is creates com-

petition between paerns, thus implementing a type of Neural Darwinism. e

number of mates for all paerns is then cleared, so that the new paern has a

fair ance to compete for survival.

7.1.8 Making decisions

e core of the decider is a basic Hebbian neural network. Ea row in the weight

matrix represents an action (eat, mate, play, ignore) and ea column represents

one of the paern IDs produced by the classifier. e input vector consists of the

following information, whi is called the context.

• the wain’s current hunger level, a number between 0 and 1

• the wain’s current boredom level, a number between 0 and 1

• the wain’s current passion level, a number between 0 and 1

²Named for Gerald Edelman, who proposed the theory of Neural Darwinism.

148

• a list of values, where ea element is zero except the element whose index

corresponds to the paern ID

e values of the four output neurons represents a proportional vote for ea

of the potential actions (eat, mate, play, ignore). e potential actions and their

respective votes form a weighted list; the final decision is osen by weighted ran-

dom selection. is element of randomness ensures that the wains will occasion-

ally take risks. An action that had a bad outcome under one set of circumstances

may have a good outcome in a different situation.

ere is one case where the brain makes a decision without consulting the

decider. If the wain’s energy is below 0.1, the brain will oose to eat any object

that the wain encounters.

7.1.9 Learning to make better decisions

If a wain ooses an action other than “ignore”, it should know aerwards if that

was a good decision or bad decision. To support this, the wain’s happiness is

measured as a function of its energy, passion and boredom, as shown in Equation

7.2. e parameters 7 and 3 were osen aer some experimentation, but they

clearly reflect the order of priorities: eating, mating, then playing.

happiness = e ∗ 7 + (1− p) ∗ 3 + (1− b) (7.2)

ewain’s happiness is calculated before a decision is made, and again aer the

action is taken. If happiness increased, the decider’s neural network is trained with

the context vector, using a positive learning rate. Otherwise, a negative learning

rate is used for training. However, a wain should not permanently alter its be-

149

haviour based on one experience; it may have misidentified the paern, or the

result might be different under other conditions. e rate at whi the decider re-

inforces decisions with positive outcomes is specified by the positive learning rate

gene. e rate at whi it reinforces decisions with negative outcomes is specified

by the negative learning rate gene.

Wains need to be able to respond to anges in their environment. To allow

this, all of the weights in the neural network decay over time. e rate at whi

the weights decay is specified by the decider forgeing rate gene.

Because thewain can never knowwhether or not ignoring an object was a good

decision, the values in the “ignore” row in the weight matrix are always zero. is

row is not currently required; it is reserved for future use.

7.2 Wain Genetics

Since the focus of this resear was the brain, wains have a very simple body

and metabolism, and most of the genetic traits relate to the brain. e differences

between the brain design of dotes and wains requires significant differences in the

genome. ewain genome consists of instructions encoded as a series of bytes. e

encoding seme is explained in Appendix D. Any byte that cannot be interpreted

as part of one of the other gene sequences will be treated as a no-op instruction,

whi has no effect. is ensures that all gene sequences are valid, and can be used

to construct a wain.

150

7.2.1 Genetic dominance

As discussed in Section 5.3.3, dominance relationships must be defined to handle

the situation when the alleles at corresponding locations in the two gene sequences

differ. For most homologous gene combinations, a type of genetic blending was

implemented by taking the average of the two values. e minimum of the two

values for the maturation time gene was used in the hope that the wains would

reproduce faster and evolve more quily. For the exteroception capacity gene,

interoception capacity gene, and paern capacity gene, the minimum of the two

values was used in the hope that it would result in smaller, more efficient brains.

More detailed information about the dominance relationships is provided in Sec-

tion D.2.

7.2.2 Wain assembly

eway in whi a wain is constructed from its genome is inspired more by a fac-

tory assembly line than by biology. e instructions in the blueprint are followed

one by one, as described in Table 7.2.

7.3 Implementation and testing

In order to give the reader an idea of how Haskell and iChe were used

in the dote implementation, some excerpts from the code will be presented and

discussed.³ ese excerpts implement the modified SOM described in Section 7.1.7.

e first step is to define a SOM node. Ea node has a vector weights rep-

resenting a model of the input data. It also has a unique identifier, index. In a

³A complete code listing is available from the author.

151

Table 7.2: Genes interpreted as instructions for assembling a wain

Instruction Action

devotion gene Set the wain’s devotion to any future offspring to the
specified value (may override a previous seing).

maturation time
gene

Set the time the wain spends with its dam to the spec-
ified value (may override a previous seing).

exteroception ca-
pacity gene

Set the number of external sensory inputs to the spec-
ified value (may override a previous seing).

interoception ca-
pacity gene

Set the number of internal sensory inputs to the spec-
ified value (may override a previous seing).

paern capacity
gene

Set maximum number of paerns the classifier can
learn to the specified value (may override a previous
seing).

paern learning
rate gene

Set the paern learning rate to the specified value (may
override a previous seing).

paern learning
rate decay gene

Set rate of decay of the paern learning rate to the
specified value (may override a previous seing).

Edelman cycle
gene

Set cycle time for pruning paerns to the specified
value (may override a previous seing).

positive decider
learning rate gene

Set the learning rate for decisions with good outcomes
to the specified value (may override a previous seing).

negative decider
learning rate gene

Set the “unlearning“ rate for decisions with bad out-
comes to the specified value (may override a previous
seing).

decider forgeing
rate gene

Set rate of decay for weights in the decider’s neural net
to the specified value (may override a previous seing).

appearance gene Add a pixel to wain’s appearance with the specified
value.

no-op gene Take no action.

152

typical SOM, ea node would be identified by its co-ordinates within the grid;

this would be used to preserve the topology of the input data. In the modified

SOM used in wains, topology is not preserved, so all that is required is that the

identifier be unique. e node has an additional field that would not be required

in a typical SOM: score. is field tras the number of times that this node’s pat-

tern has been mated, whi is a measure of how useful the node is. Periodically,

the least useful node is erased. is allows the node to learn a new paern, one

that may be more useful.

data Node = Node

{

weights :: [Double],

index :: Int,

score :: Int

} deriving (Show, Read, Eq)

e function buildNode creates a new SOM node. When a node is created, the

weight vector is typically set to small random values. e expression

ws <- getRandomRs (0.0, 5.0) creates an infinite list of randomvalues between

0 and 5, bound to ws. How can the computer hold an infinite list? To be more

precise, ws is a thunk, a promise to evaluate as mu of the list as we require. In

the next line, the expression (take n ws) takes the first n elements of ws, where

n is the desired length of the paern that this node will learn. us, only n values

from the infinite list are calculated. e use of thunks allows Haskell to work with

infinite lists very efficiently.

buildNode :: (RandomGen g) => Int -> Int -> Rand g Node

buildNode n i = do

153

ws <- getRandomRs (0.0, 5.0)

return $ Node (take n ws) i 0

e function trainNode is called once the winning node, or best mating unit

(BMU), is known. If the node is the BMU, it calls the adjustWeights function to

train it.

trainNode :: Double -> [Double] -> Int -> Node -> Node

trainNode learningRate xs bmu n =

if index n == bmu

then incScore $ adjustWeights learningRate xs n

else n

e adjustWeights function adjust the node’s weight vector tomake it slightly

more similar to the input paern. First, it zero-pads the input vector (in case the

input vector is shorter than the weight vector), and binds the result to xsSafe.

Effectively xsSafe is an infinite list, with the input data followed by a series of

zeroes. However, only a finite number of those values will ever be evaluated. Next,

it computes the vector difference between the node’s weight vector and xsSafe,

binding the result to diffs. (It is at this point that the required number of elements

in xsSafe are evaluated, aer whi the thunk is no longer needed.) e vector

difference is multiplied by the learningRate to produce a list of deltas, whi

are used to adjust the node’s weight vector.

adjustWeights :: Double -> [Double] -> Node -> Node

adjustWeights learningRate xs n = n { weights=ws' }

where ws = weights n

xsSafe = xs ++ repeat 0

154

diffs = zipWith (-) xsSafe ws

deltas = map (learningRate *) diffs

ws' = zipWith (+) ws deltas

e function incScore is called when a node mates a paern.

incScore :: Node -> Node

incScore n = n { score=score n + 1 }

e function forgetByScore is called periodically. If the input node is the one

with the lowest score, indicating that the paern learned by the node hasn’t been

very useful, the node is erased so that it can learn a new paern. All nodes have

their scores reset to zero at this time, so that the new node has a fair ance to

compete in the next round.

forgetByScore :: (RandomGen g) => Int -> Node -> Rand g Node

forgetByScore s n =

if score n <= s

then buildNode k i -- replace this pattern with an empty one

else return $ n {score = 0 } -- put all patterns on an equal footing

where k = (length . weights) n

i = index n

iChe will generate random test data for simple values, but for more

complex data structures, a custom generator is required. sizedArbNode is a gen-

erator that produces nodes in an arbitrary state. e parameter n is an indication

of how complex of a value is desired. iChe begins with simple values, and

then moves on to more complex values, until a test fails or the desired number of

tests has been run. If a test fails, iChe then tries to recreate the failure with

155

the simplest possible value (n = 0); this behaviour is extremely valuable in isolating

faults.

But what are the qualities that make a value simple or complex? at depends

on the nature of the data, but iChe has some very useful defaults. By de-

fault, the simplest number is zero. Lists of numbers are made simpler by replacing

their elements with zeroes, or by truncating the list.

By using the parameter n somewhere in the generator, the programmer can

define simplicity to mean whatever is most useful for testing the application.⁴ In

sizedArbNode, a vector of n random values is used for the node weights. If a test

fails, iChe will try to find a node with the shortest possible weight vector,

containing as many zeroes as possible.

sizedArbNode :: Int -> Gen Node

sizedArbNode n = do

ws <- vector n

i <- arbitrary

s <- arbitrary

return $ Node ws i s

Arbitrary is a typeclass. A Haskell typeclass is similar to a Java interface; any

types belonging to a typeclass must implement the functions defined by the type-

class. Alternatively, it can use default function implementations, if the typeclass

provides them. To make it easier to use the type Node with iChe, it is de-

clared to be an instance of Arbitrary, using the sizedArbNode generator defined

above.

⁴e programmer could also create multiple generators, ea using a different concept of sim-
plicity, as appropriate for diagnosing different kinds of faults.

156

instance Arbitrary Node where

arbitrary = sized sizedArbNode

Here is an example of a property that was tested usingiChe: training a

node should never ange the length of its weight vector.

propAdjustWeightsDoesntChangeLength

:: Double -> [Double] -> Node -> Property

propAdjustWeightsDoesntChangeLength lr xs n =

property $ (length . weights) n' == (length . weights) n

where n' = adjustWeights lr xs n

7.4 Experimental set-up

is section describes the procedure for seing up and running experiments with

wains.

7.4.1 Generating a starter population

For ea trial, a small number (from 200 to 1000) of gene sequences was generated

using the order and parameters specified in Table 7.3. (e same parameters were

used for all trials.) Ea gene sequence was duplicated and a wain was constructed

from the resulting pair of (identical) sequences. ese wains formed the starter

population for a trial run of Créatúr.

7.4.2 Configuring the Ecosystem

e wain configuration file allows the user to specify the items listed below.

157

Table 7.3: Gene sequence for the starter population

Instruction Parameter

devotion gene A random integer between 0 and 255.

maturation time
gene

A random integer between 100 and 500. is range was
osen based on the experience with wains.

exteroception ca-
pacity gene

784, allowing input of 28x28 grey-scale images

interoception ca-
pacity gene

3 (for energy, passion, boredom).

paern capacity
gene

A random integer between 11 and 25. is range waso-
sen aer experimenting with a stand-alone implementa-
tion of the modified SOM.

paern learning
rate gene

A random integer between 90 and 110, whi encodes for
a learning rate between 0.90 and 1.10. is range waso-
sen aer experimenting with a stand-alone implementa-
tion of the modified SOM.

paern learning
rate decay gene

A random integer between 230 and 255, whi encodes for
a decay rate between 0.90 and 1.00. is range wasosen
aer experimenting with a stand-alone implementation
of the modified SOM.

Edelman cycle
gene

A random integer between 50 and 100000. is range was
osen arbitrarily.

positive learning
rate gene

A random integer between 10 and 30, whi encodes a
learning rate between 1 and 3. is rangewasosen aer
experimenting with a standalone Hebbian neural net.

negative learning
rate gene

A random integer between 10 and 30, whi encodes a
learning rate between 1 and 3. is rangewasosen aer
experimenting with a standalone Hebbian neural net.

decider forgeing
rate gene

A random integer between 230 and 255, whi encodes a
forgeing rate between 0.90 and 1.00. is range waso-
sen aer experimentingwith a standalone Hebbian neural
net.

appearance gene A sequence of 784 genes, encoding the image shown in
Figure 7.1

158

• the directory containing the population

• the username the daemon will run as

• the directory containing the MNIST images

• the minimum population level

• the interval between metabolism tax levies, in number of Créatúr clo tis

• eiq, the multiplier relating the brain complexity to its metabolic costs

• the energy provided by ea numeral, if eaten

• the boredom relief provided by ea numeral, if played with

• pcrossover, the probability that crossover resulting in equal lengths will occur

when gametes are created

• pcut−and−splice, the probability that crossover resulting in non-equal lengths

will occur when gametes are created

• pmutation, the probability that mutation will occur when gametes are created

Based on the experience with dotes, values were already known that were

likely to work well to ensure that the wains had sufficient food available. At the

start of early wain trials, food provided abundant energy. e logs were moni-

tored to verify that the wains were learning to distinguish between the different

kinds of objects in their environment, and make appropriate decisions. A lile at a

time, the amount of energy provided by food was reduced, to aempt to drive the

population to make even smarter decisions. Aer ea adjustment, the population

size was monitored to ensure that the population was still stable.

159

7.5 Results and Interpretation

is section presents the results obtained using wains. e data presented is from

the final trial. e population used in this trial was named Ardara e set-up

for this trial is shown in Tables 7.4 and 7.5. e values osen for pcrossover,

pcut−and−splice, and pmutation are not biologically realistic, but were osen so that

evolution might be observed during the time alloed for this resear.

Table 7.4: Set-up for final wain trial

item value

initial population 100

minimum population 50

metabolic cycle 1000 tis

eiq 0.000033

pcrossover 0.1

pcut−and−splice 0.01

pmutation 0.001

7.5.1 Population stability

As shown in Figure 7.4, the population was self-sustaining. Aer the starter pop-

ulation was created, no wains were added except through birth. At Créatúr clo

times 744138, 752352, 791676, and 806168, the poisonous numerals (7, 8 and 9) were

made successively more poisonous, to see how the wains would cope. (Table 7.5

shows the initial and final values for these numerals.) As shown in Figure 7.5, the

first three anges seemed to have no effect, but aer the last ange, a dip was ob-

served in the population size, followed by a recovery. e poison levels remained

160

Table 7.5: Numeral aracteristics for final wain trial

object energy boredom relief comment

0 1.0 0 edible, boring

1 0.8 -0.1 edible, fun

2 0.6 -0.2 edible, fun

3 0.3 -0.3 edible, fun

4 0.2 -0.6 edible, fun

5 0.1 -0.8 edible, fun

6 0 -1.0 edible, fun

7 -0.05 (initial) -0.2 poisonous, fun
-0.1 (final)

8 -0.08 (initial) 0 poisonous, boring
-0.2 (final)

9 -0.11(initial) 0 poisonous, boring
-0.3 (final)

wain -0.05 0.1 poisonous, boring

161

at the new (higher) seings, but the wains had adapted. Section 7.5.5 will provide

some insight into how they adapted.

7.5.2 Eating patterns

Figure 7.6 shows how the first generation of wains successfully learned to dis-

tinguish between edible and non-edible foods. e time period shown is from the

first generation, so this graph reflects learning during a single lifetime. During this

period, eawain encountered 52 examples of ea handwrien numeral, on aver-

age. Some of the wains in the initial population died quily. If these wains were

less adept than average at distinguishing numerals, aer their death the accuracy

of the population as a whole would rise, even if the remaining individuals made

no further improvement. To account for this effect, data excluding the wains that

died during the period shown is also ploed; these are the lines labelled “filtered”.

Figure 7.7 shows the eating paern over a longer period of time. Only wains

aged between 1100 and 1200 Créatúr clo tis are included. e age range was

restricted so that the data would not be affected by anging demographics in the

population (e.g., a sudden influx of young wains reaing maturity at the same

time.) e time span shown includes 12 generations of wains. As can be seen from

the graph, overall, the wains tend to eat edible numerals and avoid the poisonous

ones. In particular, they avoid trying to eat ea other. If a wain does try to

consume another wain, the first wain loses some energy; this mimics the cost of

the fight that would likely ensue in the biological world.

Eating a poisonous numeral can be classified as an mistake on the part of a

wain, but not eating an edible numeral is not necessarily a mistake. If a wain is

162

Figure 7.4: Wain population growth. e time span shown includes 12 generations
of wains. e grey vertical band indicates a series of adjustments to the toxicity
of poisonous numerals.

163

Figure 7.5: Wain population anges in response to a harsher environment. e
four vertical lines indicate adjustments to the toxicity of poisonous numerals.

164

Figure 7.6: First-generation wain eating paerns. Graph shows the fraction of
encounters where thewains decided to eat (or try to eat) the object. Green indicates
edible objects; red indicates poisonous objects.

165

Figure 7.7: Wain eating paerns. Graph shows the fraction of encounters where
the wains decided to eat (or try to eat) the object. Green indicates edible objects;
red indicates poisonous objects.

166

not hungry, eating will not make it happier, so the numeral may have more value

as a toy (by reducing the wain’s boredom level, increasing its happiness). Or, if the

numeral is boring (i.e., playing with it will not reduce boredom), then ignoring it

is just as sensible as eating it.

However, wains do make mistakes, as can be seen from the number of poi-

sonous numerals eaten. ere are four reasons why a wain would eat a poisonous

numeral. In no particular order, they are:

1. Inexperience: e wain has not yet learned whi numerals are poisonous.

2. Misidentification: One of thewain’s paernsmates two ormore numerals,

at least one of whi is edible.

3. Taking risks: As discussed in Section 7.1.8, the element of randomness en-

sures that the wains will occasionally oose a decision that is unlikely to

have a good outcome.

4. Starvation: As discussed in Section 7.1.8, if the wain’s energy is below 0.1,

the brain will oose to eat any object that the wain encounters.

Figure 7.8 shows that misidentification plays a significant role. Only wains

aged between 1100 and 1200 Créatúr clo tis are included. By the time a wain

reaes 1100, it has encountered thousands of numerals,⁵ so inexperience is not a

factor. As shown this graph, handwrien 8s, whi are poisonous, are eaten far

more oen than other poisonous numerals. One reason for this may be confusion

⁵At ea ti of the Créatúr clo, a numeral is offered to one of the wains in the population.
Every 1000 tis, the metabolism process executes, and all creatures age by one unit. As a rough
estimate, we can assume that there are 250 wains in the population, so out of the 1000 numerals
offered in a cycle, a particular wain would receive approximately 4.

167

between 8s and 3s, whi are edible. Similarly, handwrien 4s, whi are edible,

are eaten far less oen than other edible numerals. Confusion between 4s and 9s,

whi are poisonous, may account for this.

ere is no direct way to find out whi numeral a wain thinks a particular

image is. e question is meaningless, because the wain has no concept of numer-

als. All it has are paerns, and those paerns are in no particular order. If a wain

ooses to eat an image containing a handwrien numeral, it is because that image

is a reasonable mat for one of the wain’s paerns, and in the wain’s experience,

images that mat that paern that are usually edible.

However, there is an indirect way to gain some insight into the mistakes that

wains make. Figure 7.9 shows the SOM of a young adult wain. Ea node in the

SOM has a vector of 784 weights; these have been converted into a 28x28 matrix

of greyscale values, allowing us to see the paerns that this wain has identified.

To clarify, the wains do not actually receive sensory inputs in two dimensions.

e appearance of objects in their environment is presented to the SOM as a one-

dimensional vector, so they are unaware that pixel 1 and pixel 29 are adjacent

because they are in the same column in subsequent rows. In any case, the figure

does show that some of the paerns identified by this wain are ambiguous, and

that confusion of 3s with 8s, and 4s with 9s, is quite plausible.

7.5.3 Mating patterns

As can be seen in Figure 7.10, wains quily learned to prefer other wains as po-

tential mating partners, rather than numerals. Only wains aged between 1100

and 1200 Créatúr clo tis are included in the graph. So far, no cause for the

168

Figure 7.8: Detailed wain eating paerns. Graph shows the fraction of encounters
where the wains decided to eat (or try to eat) the object. Green indicates edible
objects; red indicates poisonous objects.

169

Figure 7.9: A typical SOM.is the SOM of a young adult wain. Node (j) is a clear
mat for X, the appearance of a wain. Most of the numerals are well-defined. As
is typical, that there are two nodes that might mat a 2: node (k) would mat a
2 with a loop, while node (b) would mat a plain 2 (or a heavily slanted 1). ere
is no clear representation of the numeral 4; nodes (h) and (n) are probably the best
mat for a 4, but they are even beer mates for a 9. Node (d) might mat a 5
or a 6.

temporary increase in flirtations with objects at Créatúr time 20-2100000 has been

determined. Recall from Section 7.1.3 that when a wain encounters another wain,

if it ooses to mate, it loses a small amount of energy for the time investment of

“flirting”. If a flirtation is unsuccessful, the unluy suitor ends up with less energy

and no reduction in passion, and therefore has a lower happiness level. It appears

that wains have learned to flirt when reproduction is likely, as demonstrated by the

fact that they generally flirt in less than one-third of encounters, yet the population

is thriving. ere are three reasons why a wain’s flirtation would be unsuccessful;

these are listed below.

• e other wain has osen not to mate.

• e other wain has been selected to be the dam, and it is currently rearing

a ild.

• is wain has been selected to be the dam, and it is currently rearing a ild.

170

Figure 7.10: Wain flirting paerns. Graph shows the fraction of encounters where
the wain decided to mate (or try to mate) with the object.

171

A wain currently has no way to know another wain’s passion level; if it did,

it might be able to anticipate the other wain’s decision, whi would help it avoid

situation (1). A wain’s appearance indicates if it is raising a ild. Wains do see

ea other’s appearance, so they could use that information to avoid situation (2).

In order to do that, they would need to have two separate SOM paerns, one for a

wain with a ild, and one without. However, in the 500+ brain scans performed

to date on wains, the only instances where there are multiple X-like paerns in

the SOM would differentiate between mutant wains and normal wains, as will be

discussed in Section 7.5.6.

It was intended that wains would have a sensory input indicating if it was

currently raising a ild, but this was inadvertently omied from the wain imple-

mentation. However, a wain does know its current passion level. Since the passion

level is reset to zero aer mating, it could be used as a very rough measure of the

likelihood that this wain is currently raising a ild. It is a rough measure because

a low passion level only indicates that the wain has mated recently; it does not

indicate whether the wain was the sire or dam in the last mating. Flirting only

when its passion level is high would help a wain avoid situation (3).

But is this strategy being used? Figure 7.11 shows the values for one element of

the decision weight matrix: the element that relates the wain’s passion level to the

likelihood that the wain will flirt, given an opportunity. As explained in Section

7.1.8, the weight matrix is multiplied with the vector of sensory inputs to create a

weighted list of possible actions. e action is then osen by random weighted

selection. However, all actions have a minimum weight of 1, to ensure that wains

take risks occasionally. erefore, if a weight is negative, the action may still be

selected, but only rarely.

172

Figure 7.11: Wain mating weights. Graph shows the values for one element of the
decision weight matrix; the element that correlates the wain’s passion level with
the likelihood that it will flirt, given an opportunity. e statistics are taken from
the wains that were alive at time 3308000.

Over half of wains leave the decision whether to flirt or not entirely up to

ance, by having a negative weight at this location in the weight matrix. Some-

what less than half of the population do seem to follow the strategy outlined above;

i.e., they are unlikely to flirt unless their passion levels are high. ere are a few

wains in the population that have a very high(>4) weight, whi means that even

a low passion level makes them very likely to flirt. ey have been given the ni-

name “Don Wains” as a nod to the legendary lover, Don Juan.

7.5.4 Play patterns

A wain never suffers any ill-consequences from playing with a numeral, and only

a minor increase in boredom for playing with another wain. At best, the object

will lower its boredom levels. At worst, the wain loses out on a potentially beer

173

opportunity, su as eating the object (if it is edible), or mating with it (if it is

another wain). Figure 7.12 shows the play paerns for wains. Only wains aged

between 1100 and 1200 Créatúr clo tis are included in the graph. Note that the

rates for the numerals in this graph are roughly in the inverse order of Figure 7.8,

whi suggests that the wains prefer to play with the numerals that they are most

reluctant to eat.

7.5.5 Wain evolution

Learning rate genes

Recall from Section 7.1.9 that the positive learning rate gene controls the rate at

whi the decider reinforces decisions with positive outcomes, while the negative

learning rate gene controls the rate at whi it reinforces decisions with negative

outcomes. Figure 7.13 shows how the value of these two genes anged over time

in the Ardara population. Over time, a slow but steady reduction in the value of

the positive learning rate gene can be seen. e effect of this would be to make

wains less likely to assume an action is wise because it had a good outcome on one

or two occasions; instead, they wait for more evidence.

Anotherange that can be seen in Figure 7.13 may explain howwains adapted

to the increases in toxicity of the poisonous numerals, described in Section 7.5.1.

Immediately aer this ange was made, the value of the negative learning rate

gene increased significantly, and eventually levelled off. e effect of this would be

to make the wains more likely to avoid actions that had bad outcomes. Taking the

anges to both of these genes into account, it seems that the wains have evolved a

slightly more pessimistic view of their environment than was present in the initial

174

Figure 7.12: Wain play paerns. e lighter green lines indicate fun objects (those
whi reduce boredom); dark green to bla indicates boring objects.

175

Figure 7.13: Evolution of decider component in the brains of wains. e grey ver-
tical band indicates a series of adjustments to the toxicity of poisonous numerals.
e graph shows a slow but steady trend reducing the positive learning rate. e
negative learning rate increased aer the adjustments, but seems to have levelled
off. e time span shown includes 12 generations of wains.

176

population.

Pattern capacity gene

As discussed in Section 7.1.2, the metabolism tax paid by wains is partly dependent

on the paern capacity of the SOM, whi is determined by the paern capacity

gene. If a wain can reduce the number of paerns that it learns, without sacrificing

its ability to identify enough edible food to survive, then it has an evolutionary

advantage. As shown in Figure 7.14, wains have approximately two fewer paerns

now than the initial population did. e population continues to thrive, however,

as evidenced by Figure 7.4.

Edelman cycle gene

Recall from Section 7.1.7 that at intervals specified by the Edelman cycle gene, the

least useful paern (the one that has the fewest mates) is discarded, and the node

is randomised so that it can learn a new paern. In the initial population, the cycle

was set to a random integer between 50 and 100000. Figure 7.15 shows how the

cycle has evolved over time. e cycle increased, then levelled off, but it may be

increasing again.

7.5.6 Mutations

Given the high mutation rate used in this trial (pmutation = 0.001), it was not sur-

prising that mutations appeared in the second generation of the Ardara population.

One area where it is particularly easy to observe the effect of mutations is in the

appearance of the wains. Figure 7.16 shows some representative examples.

177

Figure 7.14: Evolution of paern capacity for wains. e graph shows a trend
toward reducing the number of paerns stored, making the SOM more efficient.
e time span shown includes 12 generations of wains.

178

Figure 7.15: Evolution of Edelman cycle for wains. e graph shows an trend to-
ward lengthening the Edelman cycle. e time span shown includes 12 generations
of wains.

179

(a) Normal (b) Normal, rearing a ild (c) Double x mutation

(d) Short southeast mutation (e) Reflected south mutation (f) Picasso mutation

Figure 7.16: Wain appearance mutations

180

Figure 7.17 shows the family history of one particular mutation. e “missing

south” mutation caused the sequence of appearance genes to be truncated, so that

the lower half of the X is missing. If the offspring inherit appearance genes for

the lower half from only one parent, those genes will be expressed. erefore, the

“missing south” mutation is a recessive trait, although it involves a sequence of

genes rather than a single gene.

Figure 7.17: Inheritance of a mutation. e numbers are the wain IDs.

Once mutants appeared, it was to be expected that wains would develop ways

to recognise them. Figure 7.18 shows a SOM with two separate paerns for wains,

one for normal wains, and one for mutants. As this wain is itself a mutant, it now

has a way to identify wains that are likely to be related to it. Given time, this might

lead to kin selection.

181

Figure 7.18: A mutant-detecting SOM. is wain’s SOM shows two separate pat-
terns for wains. is wain is itself a mutant, of the “reflected south” variety.

7.5.7 Risk-taking and evolution

Aer reviewing the results, it seems that wains too oen take actions that are

predicted to have bad outcomes. is happens because every action receives a

minimum weighting of one, whi was implemented so that the wains would

occasionally take risks. An action that had a bad outcome under one set of cir-

cumstances may have a good outcome in a different situation. One potential area

for improving the decider would be to make the amount of risk-taking genetic. It

seems likely that evolution would make the wains a lile more risk-adverse.

7.6 Summary

e key points about the wain implementation are summarised in this section,

with references to the section in whi the topic was discussed. e appearance

of a wain is an 28x28 grey-scale image, whi is genetically determined (7.1.1).

Wains in the starter population had the image of an X as their appearance; since

182

then, several mutations have arisen producing wains with different appearances

(7.5.6).

e objects in the wain universe include images of handwrien numerals, and

other wains. Some numerals are edible; eating them provides energy to a wain.

Others are mildly poisonous; eating them decreases a wain’s energy(7.1.2). When a

wain encounters an object, the appearance of that object is presented to the wain’s

senses, along with information about the wain’s current state (7.1.8). It can then

oose to eat (7.1.2), aempt to mate with (7.1.3), or play (7.1.5) with the object.

Aer a ild is born, it remains with the dam until it is mature (7.1.4).

Wains have brains whi contain a classifier and a decider (7.1.6). e classifier

is a SOM; it identifies paerns in sensory inputs that a wain receives during its life-

time. e decider is a Hebbian network; it makes decisions based on the paerns

identified by the classifier and learns from the results. e brain implements a

form of Neural Darwinism; paerns compete with ea other, and the least useful

paern is pruned periodically.

e wains discovered paerns in the data (7.5.2, 7.5.3, 7.5.4), and they thrived

(7.5.1). Not only did individual wains learn to make beer decisions during their

lifetime (7.5.2), but anges were made to the brain over several generations that

improved the decision-making ability of the wains (7.5.5). When poisonous nu-

merals became more toxic, wains adapted (7.5.1), primarily by modifying their

learning rates through evolution (7.5.5). Evolution also made the brains of wains

more efficient, by reducing the number of paerns that the SOM stored, without

affecting the wain’s ability to identify sufficient food to survive (7.5.5).

183

Chapter 8

Conclusions and observations

is apter presents some general observations from the Créatúr resear project

that might be applicable to other ALife projects as well. Finally, it presents some

conclusions about this project.

8.1 Observations

During the literature review, the author found information about ALife implemen-

tations, but very lile advice on seing up an experiment, monitoring the popula-

tion, and identifying problems. is section contains the sort of information that

the author would have found useful. Some of the advice is specific to aspects of

the approa used in this project, but most of it is general enough to apply to any

ALife project.

184

8.1.1 Analysis tools

e availability of good analysis tools is crucial to understanding why a population

is succeeding or failing. Guessing why a population isn’t behaving as expected and

tweaking parameters to try to solve the problem is an exercise in frustration. Some

of the types of tools that were found most useful are listed below.

• tools to analyse large quantities of log data in order to discern general pat-

terns of behaviour in the population

• tools to monitor the brain activity of an animat and represent it visually

• tools visually represent the structure (neural connections) in a dote’s brain

• tools to analyse a dote’s genes, allowing the researer to verify that domi-

nance and blending were working as expected

8.1.2 Strategy for using Créatúr

Chapters 6 and 7 described how Créatúr was used in experiments with two differ-

ent types of animats. e procedure below is the one found to be most successful

during those experiments. It may also be a useful guide to others beginning an

ALife resear project.

Design the survival problem

When using animats to solve a non-biological problem, consider re-framing it as a

survival problem in order to take advantage of evolution. emost straightforward

way to do this is to use the problem as a source of energy for the animats. For

example, if the goal is for the animats to recognise paerns in data (e.g., identifying

185

handwrien numerals), then successfully identifying those paerns could result in

an increase of energy for the animats, while mis-identifying a paern could result

in an energy loss. e strings of data to be examined become objects in the animats’

environment.

Design the animat

In designing the animats, one important consideration is the genome. Choosing

whiaracteristics to make inheritable involves a trade-off. Life on this planet is

a testament to evolution’s ability to design solutions to meet difficult andanging

requirements, so the temptation for the programmer faced with a difficult question

is to let evolution find the answer. However, there are no guarantees that an answer

exists, or that evolutionwill find it, at least not in the timescale of a researproject.

Start with an “easy” environment

Begin with an environment in whi it is trivial for the animats to survive. For ex-

ample, themetabolism ratemight be very low initially, allowing animats to survive

for long periods without food. Aer the animats are mating and eating, gradually

increase the metabolism rate to encourage faster evolution. is is usually quier

than starting with aallenging environment and waiting for evolution to produce

animats that can survive in it.

Ensure that the animats mate

Diagnose and correct any problems that prevent the animats from mating. e

animats must be able to recognise a mating opportunity, and take advantage of it.

is should be the first goal of any ALife experiment, because once it is aieved,

186

evolutionmay be able to assist with the remaining goals. If mating is not occurring,

it may indicate a problem with the design of the animat, or a bug in its implemen-

tation. Once mating occurs, at least occasionally, the frequency of mating is likely

to increase without further intervention because evolution will select for animats

that mate regularly. Eventually the population should be self-sustaining

Ensure that the animats eat

Once the animats are mating occasionally, diagnose and correct any problems that

prevent them from eating. e animats must be able to recognise food in their en-

vironment, and take advantage of some opportunities to eat. If the initial environ-

ment is “easy”, animats will only need to eat occasionally. Later on, the harshness

of the environment can gradually be increased, and evolution will select for ani-

mats that eat more regularly.

Ensure that offspring are self-sufficient

Once the animats aremating and eating, ensure that at least some offspring become

self-sufficient. If offspring are not self-sufficient at birth, they should be nurtured

until they are self-sufficient. However, they should not cause an excessive drain

on the parent. Once a small percentage of the offspring become self-sufficient,

evolution should improve the survival rate, perhaps by selecting for offspring that

are smarter at birth, or by selecting for beer parents.

Gradually make the environment more allenging

Recall that evolution requires three conditions: (1) variation, (2) heredity, and (3)

differential fitness. Once the animats are mating, eating, and raising viable off-

187

spring, the first two conditions are satisfied. However, since the initial environ-

ment is an “easy” one, there may be lile difference in survival rates between

animats with different traits. Now it is time to “turn up the heat”; i.e., to alter the

environment to ensure that the best-adapted animats are more likely to survive. In

a sense, the steps above were preparation; this is where the real experiment begins

and the animats start to “solve” their environment.

8.2 Conclusions

As discussed in Section 3.1, the first objective of the Créatúr project was to evolve

an ALife population with sufficient intelligence to discover paerns in data, and to

make survival decisions based on those paerns. e first ALife implementation,

dotes, did not aieve this objective. However, the second implementation, wains,

was successful. e wains have learned to distinguish between objects in their

environment by identifying paerns in data representing the objects’ appearance.

Based on those paerns, they have learned to make good decisions about whi

objects to eat, whi ones to try to mate with, and whi ones to play with.

e second objective was to create a population that adapts to its environment

through both evolution and lifetime learning. e wain implementation aieved

this objective as well. Even without benefit of evolution, the first generation

mastered the numeral recognition task well enough to thrive. Evolution further

adapted the wains to their environment by making them a lile more pessimistic

(lowering the rate at whi they learn from positive experiences, and raising the

the rate at whi they learn from negative experiences), and also by making their

brains more efficient (reducing the number of paerns and increasing the Edelman

188

cycle) without adversely affecting their accuracy.

e third objective was to evolve an ALife population with some general-

purpose problem solving skills, that could be used as “seeds” for projects requiring

specialised skills. is objective has not yet been aieved; more resear is needed,

as discussed in Chapter 9.

In their current form, wains are not as accurate at identifying handwrien

numerals as a trained neural network would be; however, that was not the purpose

of this resear. e numeral recognition task was a “toy problem”; it helped to

prove the design and demonstrate the capabilities of the wains. ewains were not

told what kinds of paerns to look for, whi suggests that, given time to evolve,

theywould be able to find paerns in large, complex data sets, where the researer

may not know what paerns exist, or where to look for them. If a project required

an ALife population to work on problem of similar size and complexity, some time

might be saved by starting with the wains, as evolution has already tweaked their

design. However, to have more general application, the wains will need mu

larger brains.

is project was successful in meeting the first two objectives, and the author

expects that with more resear, it would meet the third objective. Aer only

twelve generations, the wain population has exhibited complex, interesting be-

haviour. In addition, the project produced Créatúr, a reusable soware framework

for ALife projects. e Créatúr framework has already been used with two very

different ALife species, and should be applicable to a variety of ALife projects. By

encapsulating the functionality common to most ALife habitats and species, the

Créatúr framework can save development time in future projects.

189

Chapter 9

Future Directions

isapter proposes future directions for resear continuing on from, or inspired

by, the Créatúr project. Any of the directions could be pursued independently of

the others.

9.1 Rier interaction

While maintaining the philosophy that “the data is the environment”, Créatúr

could be made more biologically realistic by allowing the animats to move freely

within the environment. is would give animats a measure of control over whi

objects and other animats they interact with. e data could be used to add an el-

ement of geography; some paths would be easier to travel than others, different

parts of the environment would have a different mix of resources for the animats to

exploit. is could support isolation of populations, and eventual speciation. An-

imats might be allowed to rearrange the environment, constructing shelters and

barriers for production, and possibly promoting co-operation. In situations where

190

Créatúr is being used to analyse data rather than to study ALife itself, the ability to

rearrange data would be subject to “natural” laws that would ensure the integrity

of the relationships within the data.

It could be beneficial to allow animats to have additional types of interactions

with ea other, su as fighting, sharing, and trading. To support this, an animat

should be able to sense aspects of another animat’s current state, su as their

aggression, passion, and strength. Providing a means for animats to observe the

behaviour of others might result in a type of cultural transmission.

9.2 More realistic ecology

Allowing dotes andwains (and other future animat species) to co-exist wouldmake

the ecology more biologically realistic. Predator species and prey species might

be introduced. Animats might be given a more complex bioemistry, requiring

multiple types of nutrients available from diverse sources of food. Currently the

food in Créatúr is inert; introducing plants as a food source, subject to their own

evolutionary paths would allow the researer to study a variety of relationships

in the ecosystem.

Someanges that might promote faster evolution include working with larger

populations, imposing a maximum lifespan, opening up the genome to give evo-

lution more control over animat design, and allowing the genetic code itself to

evolve. Rates for mutation and crossover, whi are currently fixed, could be al-

lowed to evolve as well.

191

9.3 Better brains

Although the dotes did not exhibit any evidence of learning during this project,

their brain aritecture is far more flexible than that of the wains. It is possible that,

given enough time, evolution would have designed a working dote brain. How-

ever, it might be more practical to design a simple yet functional brain using the

dote aritecture, and then let evolution refine that design. New alleles encoding

additional learning rules could be added.

During ildhood, the only learning that wains perform lies in training the

SOM to recognise paerns in the data. ey do not begin to learn what actions

are best in response to those paerns until they are mature. Wains might behave

more intelligently if they had a a period between ildhood and adulthood, an

adolescence during whi they observed the oices made by their parents and

learned from the outcomes. In this way, by the time they are independent, they

are pre-equipped to make beer oices.

9.4 Benmarking

e validity of Créatúr as an ALife environment could be established by ben-

marking it against nature. Studies of predator and prey population cycles, classical

conditioning and operant conditioning (particularly shaping and aining of be-

haviours) could be studied, and compared to biological models.

Créatúr could also be used to model a possible evolutionary trend toward com-

plexity by applying standard complexity measurements to Créatúr, and observing

the results over time, particularly with regard to neural complexity. Similar stud-

192

ies were performed for PolyWorld [63, 65], it would be interesting to compare the

results.

9.5 Improved support for solving real-world prob-

lems

Another avenue for resear would be to evolve an ALife population with some

general-purpose problem solving skills, that could be used as a “seed” for projects

requiring specialised skills. It should be feasible to create a population adapted

for a particular task by starting with an existing population of animats with basic

intelligence and introducing new survival allenges gradually until the animats

have developed the new skills required. Furthermore, it should be faster to do this

than it would be to evolve a specialised population “from scrat”. It might be

advisable to have several seed populations, ea of whi has proved to be well-

adapted to solving a particular class of problem.

193

Glossary

activation A function used by an artificial neuron in an ANN, whi acts on the

weighted sum of the inputs to that neuron and determines its output. 36,

71–74, 78, 79, 117

allele One of the possible forms that a given gene may take. 28, 43, 101, 118, 120,

151, 247

animat An artificial animal. 16, 26, 28, 30, 31, 33, 40, 41, 43–48, 54–61, 63–66,

93–102, 111, 113, 116, 139, 140, 147, 185–188, 190, 191, 193, 194, 196–198, 201,

220–222, 224–233, 237–240, 243–246

appearance In Créatúr, this is a cat-all term for properties whi are available

to the senses of an animat.. 225

Ardara e name of the wain population used in the final trial of Créatúr. 160

b Boredom level of an animat. 144

ba-propagation A method for altering the weights in a neural network to re-

duce error. Used in conjunction with supervised learning. 39, 69, 70, 72, 79,

82, 83, 86, 87, 91

194

blueprint In the Créatúr project, a set of instructions for creating an animat. 102,

121, 151

aotic system A systemwhose behaviour can be predicted in principle, butwhi

is so sensitive to initial conditions that it is for all practical purposes, unpre-

dictable. 23

classifier In mathematics and neural networks, a maine learning program. In

wains, the component of the brain that builds a set of paerns representing

the types of objects that it encounters. 32, 33

context e sensory inputs presented to a wain, including information about the

wain’s internal state as well as external sensory inputs. 148, 149

crossover Breaking a pair of gene sequences, and swapping their tails. Sometimes

the term crossover is reserved for the special case where the sequences are

broken at corresponding locations, while the term cuing and splicing is

used for the more general case where the cuts may be at non-corresponding

locations, thereby ending up with two sequences of different length. 101,

103, 159, 191, 229

cutting and splicing See crossover. 102

daemon A computer program that runs in the baground and does require user

interaction. 93

dam In the Créatúr framework, the animat osen to rear the ild. See sire.

101–103, 116, 122, 138, 143, 144, 152, 170, 172, 183, 230

195

declarative programming A programming paradigm that defines the result of a

computation rather than the actions to be performed. 49

deserialise In the Créatúr framework, reading an animat from a file. See serialise.

232

design stance Predicting the behaviour of an object by assuming that the object

will operate according to its design. 24

diploid In biology, a diploid organism has two sets of romosomes in ea cell.

By extension, a diploid ALife organism contains two sets of building instruc-

tions. 29, 47, 48, 55, 101

dominance An effect where a ild inherits two different versions of a gene, and

one gene is expressed while the other has no effect. 102, 120, 151

dote An artificial lifeform in the Créatúr habitat. 17, 18, 33, 55, 113–122, 125–130,

134–140, 150, 151, 159, 188, 191, 192, 222, 236, 237

e Energy level of an animat. 114, 142

e+berry e energy provided by a edible berry. 128, 135

e−berry e energy cost from eating a poisonous berry. 135

econnection e energy cost per neural connection. 115, 128, 135

eiq A multiplier relating the brain complexity to its metabolic costs. 143, 159, 160

emergence A phenomenon where individual components behaving according to

simple rules give rise to complexity at a higher level. 15, 22, 54

196

emetabolism eamount of energy an animat loses at every ti of the Créatúr clo.

115, 143

ēmetabolism e average amount of energy that animats lose at every ti of the

Créatúr clo. 128

eneuron e energy cost per neuron. 115, 128, 135

ethinking e energy cost per brain update. 115, 129, 135

evolutionary development A soware development methodology in whi an

initial implementation is built, user feedba is obtained, and new versions

are produced as needed. 223

export In programming, making data or methods in one component visible to

other components. 75, 103, 104

exteroception e perception of stimuli that originate outside the body; the pro-

cess by whi an organism perceives the external world. 97, 99, 100, 227

feed-forward network In a feed-forward network, the neurons are grouped into

layers. e flow of data is from the sensor layer to the output layer, without

any loops. 38, 39, 69

forgetting rule e meanism by whi connections that turn out to be useful

are preserved, while those that turn out not to be useful are pruned. 116–118

functional programming A programming paradigm that treats expressions as

mathematical functions, and avoids side effects of computation. 49

197

gamete In biology, a sex cell. In Créatúr, a sequence of genes donated by one

parent. 101–103, 229

gene A unit of heredity. 101, 120, 151

genome e set of genes for an organism. 102, 116, 229, 230, 232, 233

h e hunger level of an animat. 142

haploid An organism or cell having only one sequence of genes. 44, 46–48, 55

Haskell Apurely functional programming language named aer the logicianHaskell

Curry. 51, 56, 70–74, 79, 90, 91, 103, 105, 106, 121, 151

Hebb’s Rule A method of updating weights for an artificial neuron. 37, 55, 118,

120

Hebbian learning Any of a number of algorithms for updating neurons in whi

“cells that fire together, wire together”. 37, 40, 55

hidden layer An internal layer of artificial neurons in an ANN. 38

holism e view that a system should be studied as a whole entity. 24

homologous Refers to genes for the same aracteristics, at the same location in

the gene sequence. 120, 151

imperative programming A programming paradigm that focuses on computa-

tion as a series of actions performed in a specified order, whi ange the

state of the program. 49

198

incomplete dominance An effect where a ild inherits two different versions of

a gene, and one gene is expressed more strongly than the other. 102

input pattern e input presented to an ANN. 38

intentional stance Predicting the behaviour of an object by treating it as an agent

with beliefs and desires, and assuming that the object will act in accordance

with those beliefs and desires. 25, 54, 59, 60

interoception eperception of stimuli that originate inside the body; the process

by whi an organism perceives its own condition. 97, 99, 100, 227

lambda calculus A formal system developed by Alonzo Chur [74] for defining

functions, function applications, and recursion. 49

learning rule e means by whi an artificial neuron adjusts the weights be-

tween itself and other neurons (or direct inputs). 116, 117

local learning rule A learning rule whi depends only on the neuron’s current

state and its inputs. 37

meme A unit of cultural transmission. 28

metabolism tax An amount of energy deducted from organisms in the Créatúr

universe, related to brain complexity. 115, 128, 143

monad In functional programming, a structure that represents computations. 107,

108

Muller’s ratet A theory of how sexual reproduction may help to remove dele-

terious mutations from the gene pool. 29

199

mutation In ALife, randomly altering a bit in a gene sequence. 102, 159, 191, 229

nconnections e number of neural connections in the brain. 115

Neural Darwinism A theory proposed by Gerald Edelman whi states that con-

nections in the brain undergo a type of natural selection. 16, 31, 146, 148,

183, 220

neural network See artificial neural network. 50

neural plasticity e process whereby the brain “wires” and “re-wires” itself. 31

neuron A nerve cell, or a node in an ANN. 19, 31, 35–38, 40, 50, 64, 121

nex e number of exteroceptive inputs to the brain. 143

nint e number of interoceptive inputs to the brain. 143

npat e maximum number of paerns that the brain can recognise. 143

nneurons e number of neurons in the brain. 115

node In mathematics, a vertex in a graph. In neural networks, another term for

an artificial neuron. 40, 41, 151

nominal emergence A phenomenon occurs when a property can exist at a macro

level but not a micro level. 23

non-local learning rule A learning rule whi has other dependencies besides

the neuron’s current state and its inputs. 37

Oja’s Rule Amethod of updating weights for an artificial neuron. 37, 55, 118, 120,

122

200

output layer e layer of artificial neurons in an ANNwhi produces the output

signals. 38

PolyWorld An alife program wrien by Larry Yaeger. 16, 17, 42, 44, 45, 63, 64

p Passion level of an animat. 115, 143

pcut−and−splice e probability that crossover resulting in non-equal lengths will

occur when gametes are created. 159, 160

pmutation e probability that mutation will occur when gametes are created. 159,

160, 177

pcrossover e probability that crossover resulting in equal lengths will occur when

gametes are created. 159, 160

persistence In computer science, the ability for data to be preserved between ex-

ecutions of a program. 96

physical stance Using whatever is known about the laws of physics and consti-

tution of an object to predict its behaviour. 24

polymorphic In computer science, the ability for code to work with more than

one data type. 105

Popperian creature Acreature that can evaluate possible actions andmakeoices

based on that evaluation. 30, 34, 58

punctuated equilibrium A theory that states that evolution, rather than being

gradual, tends to happen in short bursts, interspersed with long periods of

lile or no ange to the species. 43, 55

201

iChe A property-based soware testing tool. 53, 54, 56, 88, 90, 103, 104,

110, 121, 151

Redeen hypothesis A theory that sexual reproduction may provide protec-

tion against parasites as the host evolves new defenses. 29

reductionism e view that a system can be understood by dividing it into com-

ponents and studying their properties. 23

referential transparency A property where any expression can be replaced by

its value without anging the behaviour of the program. 49, 50, 107

RGB A colour model in whi the red, green, and blue components are specified.

45, 113, 114

sensor layer e layer of artificial neurons in an ANN whi receives the input

signals. 38

serialise In the Créatúr framework, converting an animat into a format that can

be stored in a file. See deserialise. 232

sire In the Créatúr framework, the animat not osen to rear the ild. See dam.

101–103, 172

strong emergence A phenomenon that cannot be derived from the underlying

processes. 23

supervised training A training method in whi the desired response (target val-

ues) for ea input vector in the training set is known and provided to the

neural network during training. 39, 69, 70

202

target pattern e desired output of an ANN for a particular input paern. 39,

40

test-driven development A soware development methodology credited to Kent

Be [81] where the developer writes a (failing) test case for a new function

or feature, and then writes the code to pass the test. 53

thunk A computation that is delayed until the result is needed. 153

tthinking e number of brain updates performed when making a decision. 115

tuple An ordered list of elements. In Haskell, elements in a list must all be of the

same type, but elements in a tuple need not be. 89, 105

type variable A placeholder for a type. 105

unsupervised training A training method in whi the desired responses (target

values) for the input vectors in the training set are not known. 39, 40

wain An artificial lifeform in the Créatúr habitat. 18, 33, 41, 55, 139–153, 157–163,

167, 168, 170, 172–174, 177, 181–183, 188, 189, 191, 192, 222, 242, 243, 246

weak emergence A phenomenon can be derived from the underlying processes,

but only by simulation. 23

winning node In a SOM, the node whose weight vector is most similar to the

input paern. 40, 41

203

Acronyms

AI Artificial Intelligence. 15, 16, 20, 24, 34, 35, 54, 55, 58, 62, 63, 219, 220

ALife Artificial Life. 15, 16, 18–20, 24, 33, 42–47, 54, 55, 57–63, 65, 66, 93, 95, 111,

112, 138, 139, 184–186, 188, 189, 191–193, 219–221, 223–225, 227

ANN Artificial Neural Network. 35, 37–40, 44, 46, 47, 49, 55

fMRI functional Magnetic Resonance Imaging. 32, 33

SOM Self-organising Map. 16, 35, 39–41, 55, 146, 151, 153, 183, 192, 219

204

Bibliography

[1] McCarthy J, Minsky ML, Roester N, Shannon CE. A Proposal for

the Dartmouth Summer Resear Project on Artificial Intelligence; 1955.

e date for the origin of the term ”artificial intelligence” is oen

given as 1956. However, although the conference was in 1956, the pro-

posal whi contains the term was wrien in 1955. hp://www-

formal.stanford.edu/jmc/history/dartmouth/dartmouth.html. Available

from: http://www-formal.stanford.edu/jmc/history/dartmouth/

dartmouth.html.

[2] Langton CG. Studying artificial life with cellular automata. Phys D. 1986

October;2:120–149. Available from: http://portal.acm.org/citation.

cfm?id=25201.25210.

[3] Lewes GH. Problems of Life and Mind: e principles of certitude. From the

known to the unknown. Maer and force. Force and cause. e absolute in

the correlations of feeling and motion. Appendix: Imaginary geometry and

the truth of axioms. Lagrange and Hegel: the speculative method. Action at

a distance. Problems of Life and Mind. Tr

205

”ubner & co.; 1875. Available from: http://books.google.ie/books?

id=ouPK_DUE-KYC.

[4] Wilson SW. e Animat Path to AI. In: Proceedings of the first international

conference on simulation of adaptative behavior : From animals to animats;

1991. p. 15–20.

[5] Darwin C. e origin of species. Everyman’s library. Dent; 1936. Available

from: http://books.google.ie/books?id=gZeHvxthDkQC.

[6] Dawkins R. Climbing mount improbable. Penguin science. Penguin; 1997.

[7] Willaford W. Dictionary of Philosophy of Mind - cognitive science;

2004 [cited 2011-07-02 01:26:30]. Available from: http://philosophy.

uwaterloo.ca/MindDict/cognitivescience.html.

[8] Miller GA. e cognitive revolution: a historical perspective. Trends

in Cognitive Sciences. 2003;7(3):141–144. Available from: http://www.

sciencedirect.com/science/article/pii/S1364661303000299.

[9] Barsalou LW. Introduction to 30th Anniversary Perspectives on Cogni-

tive Science: Past, Present, and Future. Topics in Cognitive Science. 2010

Jul;2(3):322–327. Available from: http://doi.wiley.com/10.1111/j.

1756-8765.2010.01104.x.

[10] Gentner D. Psyology in Cognitive Science: 1978-2038. Topics in Cognitive

Science. 2010 Jul;2(3):328–344. Available from: http://doi.wiley.com/

10.1111/j.1756-8765.2010.01103.x.

206

[11] Aristotle. Metaphysics. e Internet Classics Arive; 350BCE. Translated

by W. D. Ross. Available from: http://classics.mit.edu/Aristotle/

metaphysics.html.

[12] Johnson S. Emergence : the connected lives of ants, brains, cities and so-

ware. London: Allen Lane; 2001.

[13] Chalmers DJ. oughts on Emergence; 1990. Post to comp.ai.philosophy

newsgroup. Available from: http://consc.net/notes/emergence.

html.

[14] Holland JH. Emergence : from aos to order. Oxford: Oxford University

Press; 2000.

[15] Bedau MA. Weak Emergence. In: Tomberlin J, editor. Philosophical Perspec-

tives: Mind, Causation, and World. vol. 11. Malden, MA: Blawell Publish-

ers Inc.; 1997. p. 375–399. Available from: http://dx.doi.org/10.1111/

0029-4624.31.s11.17.

[16] Bedau MA. Downward Causation and the Autonomy of Weak Emergence.

Principia. 2002;6(1):5–50.

[17] Chalmers DJ. Strong and Weak Emergence. In: e Re-Emergence of Emer-

gence. Oxford University Press; 2006. .

[18] Bedau M. e Scientific and Philosophical Scope of Artificial Life. Leonardo.

2002;35(4):395–400.

[19] Clayton P, Davies P. e re-emergence of emergence: the emergentist hy-

pothesis from science to religion. Oxford University Press; 2006. Avail-

207

able from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.114.1724\&rep=rep1\&type=pdf.

[20] Denne DC. e intentional stance. Bradford Books. MIT Press; 1989. Avail-

able from: http://books.google.ie/books?id=Qbvkja-J9iQC.

[21] Denne DC. Intentional Systems eory. In: e Oxford handbook of phi-

losophy of mind. Oxford handbooks. Claredon Press; 2009. Available from:

http://books.google.ie/books?id=FT-USif1E7YC.

[22] Dawkins R. e selfish gene. Oxford University Press; 2006. Available from:

http://www.worldcat.org/isbn/9780199291144.

[23] Denne D. Kinds of Minds: e Origins of Consciousness. London: Phoenix;

1997.

[24] Darwin C. On the Origin of Species or the Preservation of Favoured Races

in the Struggle for Life. Project Gutenberg; 1859. Available from: http:

//www.gutenberg.org/cache/epub/1228/pg1228.txt.

[25] Nelson RW. Darwin, en and Now: e Most Amazing Story in the History

of Science. iUniverse.com; 2009. Available from: http://books.google.

ie/books?id=je2Ms5kQCNcC.

[26] Hasan H. Mendel and the laws of genetics. Primary sources of revolutionary

scientific discoveries and theories. Rosen Pub. Group; 2005. Available from:

http://books.google.ie/books?id=lXcRCag4rR8C.

208

[27] Fisher RA, Benne JH. e genetical theory of natural selection: a complete

variorum edition. Oxford University Press; 1999. Available from: http:

//books.google.com/books?id=sT4lIDk5no4C.

[28] Denne DC. Consciousness Explained. Penguin; 1993.

[29] Fuller LWS. Transcript of the debate between Professor Steve Fuller and

Professor Lewis Wolpert at Royal Holloway College; 2007 [cited 2011-07-

03 01:11:46]. Available from: http://www.bcseweb.org.uk/index.php/

Main/RoyalHollowayCollegeDebate.

[30] Bell G. e masterpiece of nature: the evolution and genetics of sexual-

ity. Croom Helm applied biology series. Croom Helm; 1982. Available from:

http://books.google.com/books?id=q5g9AAAAIAAJ.

[31] Meirmans S, Strand R. Why Are ere So Many eories for Sex, and

What Do We Do with em? Journal of Heredity. 2010;101(Supplement

1):S3–S12. Available from: http://jhered.oxfordjournals.org/cgi/

doi/10.1093/jhered/esq021.

[32] Gensler HL, Bernstein H. DNA damage as the primary cause of aging. e

arterly Review of Biology. 1981 Sep;56(3):279–303. PMID: 7031747. Avail-

able from: http://www.ncbi.nlm.nih.gov/pubmed/7031747.

[33] Bernstein H, Byerly HC, Hopf FA,Miod RE. Genetic damage, mutation, and

the evolution of sex. Science (New York, NY). 1985 Sep;229(4719):1277–1281.

PMID: 3898363. Available from: http://www.ncbi.nlm.nih.gov/

pubmed/3898363.

209

[34] Miod RE, Bernstein H, Nedelcu AM. Adaptive value of sex in micro-

bial pathogens. Infection, Genetics and Evolution. 2008 May;8(3):267–285.

Available from: http://linkinghub.elsevier.com/retrieve/pii/

S156713480800004X.

[35] Muller HJ. e relation of recombination to mutational advance. Mu-

tation Resear/Fundamental and Molecular Meanisms of Mutagene-

sis. 1964;1(1):2–9. Available from: http://www.sciencedirect.com/

science/article/pii/0027510764900478.

[36] Hamilton WD, Axelrod R, Tanese R. Sexual Reproduction as an Adaptation

to Resist Parasites (A Review). Proceedings of e National Academy of Sci-

ences. 1990;87:3566–3573.

[37] Neiman M, Koskella B. Sex and the Red een. In: Sön I, Martens

K, Dijk P, editors. Lost Sex. Dordret: Springer Netherlands; 2009. p.

133–159. Available from: http://www.springerlink.com/index/10.

1007/978-90-481-2770-2_7.

[38] Margulis L, Sagan D. Dazzle gradually: reflections on the nature of nature.

Sciencewriters Series. Chelsea Green Publishers; 2007. Available from: http:

//books.google.ie/books?id=XccH9fgT8AgC.

[39] Popper KR. Objective knowledge: an evolutionary approa. Claren-

don Press; 1972. Available from: http://books.google.ie/books?id=

v3sIAQAAIAAJ.

[40] Grii A. Adult neural stem cells: plasticity and developmental potential. J

Physiol Paris. 2002 Jan;96(1-2):81–90.

210

[41] Edelman GM. Neural Darwinism : the theory of neuronal group selection.

Basic Books; 1987.

[42] Cri F. Neural Edelmanism. Trends in Neurosciences. 1989;12(7):240–248.

Available from: http://www.sciencedirect.com/science/article/

B6T0V-485CVT9-J/2/2086e24dfd1847320fa33368933147c2.

[43] Fernando C, Karishma KK, Szathmáry E. Copying and Evolution of Neuronal

Topology. PLoS ONE. 2008 Nov;3(11):e3775+. Available from: http://dx.

doi.org/10.1371/journal.pone.0003775.

[44] Mitell TM, Hutinson R, Niculescu RS, Pereira F, Wang X, Just M, et al.

Learning to Decode Cognitive States from Brain Images. Ma Learn.

2004;57(1-2):145–175. Available from: http://www.cs.cmu.edu/{~}tom/

mlj04-final-published.pdf.

[45] Mitell T. YouTube - Brains, Meaning and Corpus Statistics; 2009. Available

from: http://www.youtube.com/watch?v=QbTf2nE3Lbw.

[46] AAAIWebsite. AITopics / AIOverview; 2011. Available from: http://www.

aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/AIOverview.

[47] Hodges A. Alan Turing: the enigma. London: Vintage; 1992.

[48] Denne D. Colloquium Papers: Darwin’s ”strange inversion of reason-

ing”. Proceedings of the National Academy of Sciences. 2009;106(Supple-

ment_1):10061–10065. Available from: http://www.pnas.org/cgi/doi/

10.1073/pnas.0904433106.

[49] Turing AM. ComputingMainery and Intelligence. Mind. 1950;LIX:433–460.

211

[50] Hofstadter DR. Gödel, Eser, Ba: an eternal golden braid. New York:

Vintage Books; 1980.

[51] Gurney K. An introduction to neural networks. 1st ed. Address: Routledge;

1997.

[52] Hebb DO. eOrganization of Behavior: A Neuropsyologicaleory. New

edition ed. New York: Wiley; 1949.

[53] Oja E. Simplified neuron model as a principal component analyzer. Journal

of Mathematical Biology. 1982 Nov;15(3):267–273. Available from: http:

//dx.doi.org/10.1007/BF00275687.

[54] Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by

error propagation. 1986;p. 318–362. Available from: http://portal.acm.

org/citation.cfm?id=104293.

[55] Kohonen T. Self-organized formation of topologically correct feature maps.

Biological Cybernetics. 1982 Jan;43(1):59–69. Available from: http://dx.

doi.org/10.1007/BF00337288.

[56] Kohonen T. Self-organizing maps. 3rd ed. Springer series in information

sciences, 30. Springer; 2001.

[57] Langton CG. Artificial Life. In: Langton CG, editor. Artificial life: the pro-

ceedings of an InterdisciplinaryWorkshop on the Synthesis and Simulation of

Living Systems, held September, 1987, in Los Alamos, NewMexico. Addison-

Wesley, Redwood City, CA; 1989. p. 1–48.

212

[58] Ray TS. An approa to the Synthesis of Life. In: C Langton, C Taylor, J D

Farmer, S Rasmussen, editor. Artificial Life II, Santa Fe Institute Studies in the

Sciences of Complexity. vol. XI. Redwood City, CA: Addison-Wesley; 1991.

p. 371–408.

[59] Ward M. Virtual organisms. London: Pan; 2000.

[60] Eldredge N, Gould SJ. Punctuated Equilibria: An Alternative to Phyletic

Gradualism. In: (ed) Sopf TJM, editor. Models in Paleobiology. San Fran-

cisco.: Freeman, Cooper and Co., San Francisco; 1972. p. 82–115.

[61] Shao J, Ray TS. Maintenance of Species Diversity by Predation in the Tierra

System. In: Harold Fellermann, Mark D¨rr, Martin Hanczyc, Lone Ladegaard

Laursen, Sarah Maurer, Daniel Merkle, Pierre-Alain Monnard, Kasper Støy,

Steen Rasmussen, editor. Artificial Life XII: Proceedings of the Twelh In-

ternational Conference on the Synthesis and Simulation of Living Systems.

Cambridge, Massauses London, England: e MIT Press; 2010. Avail-

able from: http://mitpress.mit.edu/catalog/item/default.asp?

ttype=2\&tid=12433.

[62] Yaeger L. Computational genetics, physiology, metabolism, neural systems,

learning, vision, and behavior or PolyWorld: Life in a new context. In: Ar-

tificial Life III, Vol. XVII of SFI Studies in the Sciences of Complexity, Santa

Fe Institute; 1993. p. 263–298. Available from: http://www.beanblossom.

in.us/larryy/polyworld.html.

[63] Yaeger L, Sporns. Evolution of neural structure and complexity in a com-

putational ecology. In: Proceedings of the Tenth International Conference

213

on Simulation and Synthesis of Living Systems (ALifeX. MIT Press; 2006. p.

330–336.

[64] Griffith V. YouTube - Polyworld: Using Evolution to Design Artificial In-

telligence; 2007. Available from: http://www.youtube.com/watch?v=_

m97_kL4ox0 [cited 2009-11-30 18:26:42].

[65] Yaeger L, Griffith V, Sporns O. Passive and driven trends in the evolution

of complexity. In: Bullo S, Noble J, Watson R, Bedau MA, editors. Arti-

ficial Life XI: Proceedings of the Eleventh International Conference on the

Simulation and Synthesis of Living Systems. MIT Press, Cambridge, MA;

2008. p. 725–732. Available from: http://alifexi.alife.org/papers/

ALIFExi_pp725-732.pdf.

[66] Yaeger LS. How evolution guides complexity. HFSP Journal.

2009;3(5):328. Available from: http://www.beanblossom.in.us/

larryy/Yaeger2009_HowEvolutionGuidesComplexity_HFSP.pdf.

[67] Channon AD, Damper RI. Towards the evolutionary emergence of increas-

ingly complex advantageous behaviours. International Journal of Systems

Science. 2000;31(31):843–860.

[68] Grand S. Creation : life and how to make it. London: Phoenix; 2001.

[69] orén H, Gerlee P. Weak Emergence and Complexity. In: Fellermann

H, Dörr M, Hanczyc MM, Laursen LL, Maurer S, Merkle D, et al., edi-

tors. Artificial Life XII. Cambridge, MA, USA: e MIT Press; 2010. Avail-

able from: http://mitpress.mit.edu/catalog/item/default.asp?

ttype=2\&tid=12433.

214

[70] Belew RK. Artificial Life: A Constructive Lower Bound for Artificial Intelli-

gence. IEEE Intelligent Systems. 1991;6:8–15.

[71] BedauM. e arrow of complexity hypothesis (abstract). In: Bullo S, Noble

J,Watson R, BedauMA, editors. Artificial Life XI: Proceedings of the Eleventh

International Conference on the Simulation and Synthesis of Living Systems.

MIT Press, Cambridge, MA; 2008. p. 750. Available from: http://alifexi.

alife.org/papers/ALIFExi-pp741-823-abstracts.pdf#page=750.

[72] Calabrea R, Galbiati R, Nolfi S, Parisi D. Two is beer than one: A diploid

genotype for neural networks; 1996.

[73] Smith RE, Goldberg DE. Diploidy and Dominance in Artificial Genetic

Sear. Complex System. 1992;6:251–285.

[74] ChurA. An Unsolvable Problem of Elementary Numbereory. American

Journal of Mathematics. 1936 Apr;58(2):345–363. Available from: http://

dx.doi.org/10.2307/2371045.

[75] Suer H. A Fundamental Turn Toward Concurrency in Soware. Dr Dobb’s

Journal. 2005;30(3):16–23.

[76] Hughes J. Why Functional Programming Maers. e Computer Journal.

1989 Feb;32(2):98–107. Available from: http://dx.doi.org/10.1093/

comjnl/32.2.98.

[77] Claessen K, Hughes J. iChe: a lightweight tool for random testing

of Haskell programs. In: ICFP ’00: Proceedings of the fih ACM SIGPLAN

international conference on Functional programming. New York, NY, USA:

215

ACM; 2000. p. 268–279. Available from: http://dx.doi.org/10.1145/

351240.351266.

[78] Arts T, Hughes J, Johansson J, Wiger U. Testing telecoms soware with quviq

iChe. In: ERLANG ’06: Proceedings of the 2006ACMSIGPLANwork-

shop on Erlang. New York, NY, USA: ACM; 2006. p. 2–10. Available from:

http://dx.doi.org/10.1145/1159789.1159792.

[79] Whi programming languages are fastest?;. Avail-

able from: http://shootout.alioth.debian.org/u64q/

which-programming-languages-are-fastest.php?gcc=on\&gpp=

on\&scala=on\&ghc=on\&sbcl=on\&ocaml=on\&fsharp=on\&hipe=

on\&erlang=on\&calc=chart.

[80] Peyton-Jones S. Haskell 98 language and libraries : the revised report. Cam-

bridge U.K. New York: Cambridge University Press; 2003. Available from:

http://www.worldcat.org/isbn/9780521826143.

[81] Be K. Test-driven development : by example. Boston: Addison-Wesley;

2003.

[82] LeCun Y, Cortes C. MNIST handwrien digit database; 2010 [cited 2010-02-22

00:36:34]. Available from: http://yann.lecun.com/exdb/mnist/.

[83] LeCun Y, Boou L, Bengio Y, Haffner P. Gradient-Based Learning Applied

to Document Recognition. In: Proceedings of the IEEE; 1998. p. 2278–2324.

Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.42.7665.

216

[84] LeCun Y, Boou L, Orr G, Müller K. Efficient BaProp. In: Neural Networks:

Tris of the Trade. Lecture Notes in Computer Science. Springer Berlin /

Heidelberg; 1998. p. 546. Available from: http://dx.doi.org/10.1007/

3-540-49430-8_2.

[85] Ruiz A. hmatrix. codehaskellorg. 2010 [cited 2010-06-20 22:42:44];Available

from: http://code.haskell.org/hmatrix/.

[86] Ruiz A. A simple scientific library for Haskell; 2009. Available from: http:

//code.haskell.org/hmatrix/hmatrix.pdf.

[87] Galassi M. GNU Scientific Library : reference manual for GSL version 1.12.

Network eory; 2009.

[88] Foundation NS, of Energy D. BLAS. Netlib Repository at UTK and ORNL.

2010 [cited 2010-06-20 22:47:52];Available from: http://www.netlib.org/

blas/.

[89] Dongarra J. Preface: Basic Linear Algebra Subprograms Tenical (Blast) Fo-

rum Standard. International Journal of High Performance Computing Appli-

cations. 2002 Feb;16(1):1. Available from: http://dx.doi.org/10.1177/

10943420020160010101.

[90] Foundation NS, of Energy D. LAPACK – Linear Algebra PACKage. Netlib

Repository at UTK and ORNL. 2010 [cited 2010-06-20 22:45:15];Available

from: http://www.netlib.org/lapack/.

[91] Anderson E. LAPACK users’ guide. 3rd ed. Philadelphia: Society for Indus-

trial and Applied Mathematics; 1999.

217

[92] Hristev RM. e ANN Book. 1st ed. [publisher unknown]; 1998. Avail-

able from: ftp://ftp.informatik.uni-freiburg.de/papers/neuro/

ANN.ps.gz.

[93] Sommerville I. Soware engineering. International computer science se-

ries. Addison-Wesley; 2007. Available from: http://books.google.ie/

books?id=B7idKfL0H64C.

[94] Bullo S, Noble J, Watson R, Bedau MA, editors. Artificial Life XI: Proceed-

ings of the Eleventh International Conference on the Simulation and Synthe-

sis of Living Systems. MIT Press, Cambridge, MA; 2008.

Epigraphs

Chapter 1: Our understanding of the universe will be severely limited until we

have a more definitive view of how mu life and consciousness can be ex-

plained as emergent phenomena. John Holland [14, p. 248].

Chapter 2: e ALife-AI claim is, “e dumbest smart thing you can do is stay

alive.” at is, ALife represents a lower bound for AI. Riard K. Belew [70].

218

Appendix A

Methodology

is apter discusses the methodology used in the Créatúr resear project.

A.1 Initial resear objectives
Originally, this project was conceived as an AI project, without an ALife compo-
nent. e resear objectives defined at the beginning of the project were to:

1. Build a high-level computer model of SOMs with neuronal copying, incor-
porating the approa outlined by Fernando et al.Chrisantha Fernando [43],
and using SOM maps as described by Kohonen.

2. Using a suitable geospatial data set, train the model to discover relationships
in the input data, and to make predictions based on that data. Investigate
the following using the computer model:

• Determine whether or not the model makes useful and reliable predic-
tions.

• Identify the computational requirements (including time, processing
power and data storage).

• Define criteria whi enable the user to tell when the model is geing
“close” to a solution.

• Identify the conditions underwhi themodel follows “dead ends”, dis-
carding higher-quality solutions in favour of ones that seem promising
but whi don’t pan out.

3. Investigate whether all three meanisms (A, B and C) proposed by Fer-
nando et al. are required for obtaining useful results.

219

4. Train both a traditional artificial neural network and a program using a tra-
ditional genetic algorithm with the same geospatial data, and use it to make
similar predictions. Compare the accuracy of the predictions with those
from the model with neuronal copying. Also compare the processing re-
quirements, length of time required, practicality, etc.

A.2 Exploratory literature sear
e first step was a exploratory sear of the literature to understand the current
state of the art with respect to AI and Neural Darwinism. From this starting point,
promising lines of enquiry were followed into biology, philosophy, neuroscience,
and ALife, while maintaining the focus on how evolutionary processes could be
used to synthesise intelligence and create a system that would explore data and
discover paerns.

A.3 Resear question
As a result of the literature review, the resear question emerged: Would an AI
project that incorporates some form of Neural Darwinism yield a more intelligent
artificial brain?

A.4 Final resear objectives
Also as a result of the literature review, the objectives of the project evolved. e
author became convinced that intelligence in the abstract, separate from the prob-
lems of survival, might be too difficult to define, and was therefore not a useful
concept. As a result, the project was re-conceived, as an ALife project with an AI
component. e final objectives of the Créatúr resear project were:

1. To evolve an ALife population with sufficient intelligence to discover pat-
terns in data, and to make survival decisions based on those paerns.

2. To create a population that adapts to its environment through both evolution
and lifetime learning.

3. To evolve an ALife population with some general-purpose problem solving
skills, that could be used as “seeds” for projects requiring specialised skills.
It should be feasible to create a specialised population by starting with an
existing population of animats with basic intelligence and introducing new
survivalallenges gradually until the animats have developed the new skills

220

required. furthermore, it should be faster to do this than it would be to evolve
a specialised population “from scrat”.

A.5 Approa
Based on the initial review of the literature, a possible way to answer the resear
question emerged: evolve an ALife population with sufficient intelligence to dis-
cover paerns in data, and to make survival decisions based on those paerns.
is approa, and the rationale behind it, is discussed in more detail in Chapter
3.

A.6 Focused literature sear
With an approa identified for answering the resear question, the next step was
amore focused examination of the literature to find teniques and approaes that
might be incorporated in the design, implementation, and testing. e ideas that
seemed most promising were presented in Chapter 2 and summarised in Section
2.7.

A.7 Requirements
e ideas gathered from the literature were then translated into a set of require-
ments. e decisionwasmade to split the development into two parts, a) a reusable
framework whi would be responsible for seduling and running events su as
eating, mating, and metabolism, and b) the animat implementation. e require-
ments are documented in Appendix B.

A.8 Pilot project
In order to gain familiarity with, and assess the suitability of, some of the tenolo-
gies and tools considered for use in Créatúr, a smaller application was developed
as a pilot project. e pilot project is described in Chapter 4. At the conclusion of
the pilot project, the tools and tenologies for Créatúr were finalised.

A.9 Framework
Next, the framework was implemented and tested. e framework is described in
Chapter 5.

221

A.10 Evolving a species
efirst animat species, the dote, was designed, implemented and tested. Next, the
species was installed into the framework, and an initial population was generated
and allowed to evolve. Over the course of several trials, the process for establishing
a stable population was refined and made more efficient. Basic tools were devel-
oped as needed to extract and summarise information from the logs and data files.
e design and implementation of the dote species is described in Chapter 6.

While analysing the behaviour, learning, and evolution of the dotes, several
areas for improvement were identified, primarily in the design of the brain. When
it appeared that the dotes would not aieve the resear objectives during the
time alloed for the project, the decision was made to develop a new species to
incorporate these ideas.

Based on the analysis of the results obtained with the dotes, a new animat
species, the wain, was designed, implemented and tested. e species was installed
into the framework, and an initial population was generated and allowed to evolve.
More sophisticated analysis tools and improved logging made it easier to monitor
the progress of the species. Adaptation and learning were observed both during
the lifetime of an individual, and over generations. e design and implementation
of the wain species is described in Chapter 7.

222

Appendix B

Requirements

is appendix defines the requirements for the artificial life soware at the core
of this resear project. is information is included in order to document the
development process. e process used to develop soware for the Créatúr project
is what the computer scientist Ian Sommerville terms evolutionary development :¹
[93, p. 68f] an initial implementation was developed, evaluated, and then refined
as needed.

B.1 User needs
e objectives defined in Section 3.1 are summarised below, reworded slightly for
convenience in tracing requirements. Here and throughout this apter, uppercase
strings (e.g., OBJ-1, ALIFE-EAT) are used as unique IDs, whi are referenced in
the traceability matrices.

OBJ-1 To evolve an ALife population…

OBJ-1 …with sufficient intelligence to discover paerns in data, and
to make survival decisions based on those paerns.

OBJ-1 …that adapts to its environment through both evolution and
lifetime learning.

OBJ-1 …with some general-purpose problem solving skills, that could
be used as “seeds” for projects requiring specialised skills.

As can be seen from these objectives, Créatúr is structured as an ALife project.
Some of the user needs for Créatúr are common to most ALife projects; these are
listed below, and assigned unique IDs for convenience in tracing requirements.

¹Not to be confused with evolutionary programming or evolutionary computation.

223

ALIFE-EAT In order for an animat to survive, it must eat.

ALIFE-MATE In order for the population to thrive, animats must mate.

ALIFE-GENE In order for the population to evolve, animat reproductionmust
involve gene mixing, mutation, or both.

ALIFE-OPP In order for the ecosystem to be viable, it must provide oppor-
tunities for animats to eat and mate.

ALIFE-INIT e system should provide a way to generate an initial popu-
lation.

ALIFE-DAEMON ALife experiments may run for days or months, so the sys-
tem should run as a baground daemon that can be started,
stopped, and re-started.

ALIFE-DATA In order to be usable for resear, the system must provide ac-
cess to information about the animats while the experiment
runs.

To this list, we can add the key elements of the approa defined in Section 3.2.

APR-AI-ALIFE Combine AI and ALife. (See Section 3.2.1.)

APR-DATA-ENV Use the data as the environment. (See Section 3.2.2.)

APR-DATA-SUR Use data analysis as a survival problem. (See Section 3.2.3.)

APR-MULT-EVO Use multiple kinds of evolution. (See Section 3.2.4.)

APR-NO-FIT No fitness function except survival. (See Section 3.2.5.)

APR-NO-FLUNCH No free lun. (See Section 3.2.6.)

APR-NURTURE Protect the young while they learn. (See Section 3.2.7.)

APR-DIPLOID Use diploid animats. (See Section 3.2.8.)

APR-KINSHIP Provide a means for animats to estimate degrees of kinship.
(See Section 3.2.9.)

e user needs for Créatúr include both lists. Table B.1 traces the user needs
to the objectives.

224

Table B.1: User needs traceability matrix

OBJ-0 OBJ-1 OBJ-2 OBJ-3
ALIFE-EAT x
ALIFE-MATE x
ALIFE-GENE x
ALIFE-OPP x
ALIFE-INIT x
ALIFE-DAEMON x
ALIFE-DATA x
APR-AI-ALIFE x
APR-DATA-ENV x x
APR-DATA-SUR x x
APR-MULT-EVO x
APR-NO-FIT x
APR-NO-FLUNCH x
APR-NURTURE x x x
APR-DIPLOID x
APR-KINSHIP x

B.2 Requirements
e requirements for the Créatúr soware are discussed below. Créatúr consists of
a framework for automating ALife experiments, plus a user-provided implemen-
tation for the animats and other objects in the virtual environment. Requirements
allocated to the framework itself have IDs that begin with the prefix FRAME-;
Table B.2 maps these requirements to the user needs that they are derived from.
Requirements that the user implementation must satisfy have IDs that begin with
the prefix USR-; Table B.3 maps these requirements to the framework and user
needs that they are derived from.

B.2.1 Appearance

In accordance with the principle of using data as the environment [APR-DATA-
ENV], objects in Créatúr are created from byte strings, whi can be thought of
as representing that object’s properties. Some or all of these properties will be
available to an animat’s senses, as will be discussed in Section B.2.2. e properties
that are available to the senses are collectively referred to as the appearance of the
object. is term is used for convenience; there is nothing inherently visual about

225

these properties. In fact, Créatúr could be used to model animats with multiple
senses, including those found in nature (su as sight, hearing, smell, taste, tou,
eolocation, or the ability to detect electric fields), or even “invented” senses (su
as an ability to detect molecular structure).

Just as the objects in the environment have an appearance, so do the animats
themselves. In accordance with the principle of providing a means for animats
to estimate degrees of kinship [APR-KINSHIP], the appearance of the animats is
genetically determined. While an object’s appearance is fixed, an animat’s appear-
ance may depend partly on its current state (e.g., whether or not it is currently
rearing a ild).

us, the requirements listed below were defined.

FRAME-APPEAR e appearance of an object or an animat shall be represented
by a byte string.

USR-OBJAPP When an object is created, the implementation shall specify the
object’s appearance.

USR-ANIAPP e implementation shall provide a method to return an ani-
mat’s appearance.

USR-APPGEN e appearance of an animat shall be primarily genetically de-
termined.

B.2.2 Senses

In accordance with the principle of combining AI and ALife [APR-AI-ALIFE], ea
animat will have a brain to make decisions that affect the animat’s survival. e
brain will need information about the environment, and the animat’s current state.

As discussed in Section B.2.1, the appearance of an object or an animat is rep-
resented as a byte string, so a survival problem su as identifying food requires
some form of data analysis. is is in accordance with the principle of using data
analysis as a survival problem [APR-DATA-SUR].

us, the requirements listed below were defined. e phrase “animat’s cur-
rent state” is deliberately le undefined; the information that should be included
depends on the implementation and the nature of the experiment.

FRAME-OBJSEN In an encounter between an animat and an object, Créatúr shall
present the object’s appearance to the animat’s senses.

FRAME-ANISEN In an encounter between two animats, Créatúr shall present
ea animat’s appearance to the other animat’s senses.

226

FRAME-NCHEAT e only information provided to an animat shall be provided
via the senses.

USR-EXTERO e implementation shall provide methods to input informa-
tion from the environment (exteroception).

USR-INTERO When the implementation feeds sensory data to an animat, it
shall add information about the animat’s current state (intero-
ception).

B.2.3 Encounters

An ALife habitat must provide opportunities [ALIFE-OPP] for the animats to eat
and mate. ese events are seduled by the soware. In order to simulate the
irregular availability of these opportunities in the biological world, the objects and
animats for ea encounter are selected at random.

A program counter is used to sedule these encounters. e advantage of
using a counter rather than system clo time is that it ensures that the frequency
of food and mating opportunities is not affected by the amount of processing time
allocated to the Créatúr daemon, or by stopping and restarting the daemon. It also
allows meaningful comparison of experiments performed on computer systems
with different hardware and processing capacity.

us, the requirements listed below were defined.

FRAME-ENC Créatúr shall sedule all encounters between animats, and of
animats with objects.

FRAME-RANOBJ Créatúr shall provide a meanism to select a random object
from the environment.

FRAME-RANANI Créatúr shall provide a meanism to select a random animat
from the population.

FRAME-COUNT Events in Créatúr shall be seduled using a program counter
whi only advances when the program is running.

B.2.4 Decisions

In accordance with the principle of combining AI and ALife [APR-AI-ALIFE], the
animats will have the ability to make decisions that affect their survival and re-
production. us, the requirements listed below were defined.

227

FRAME-DECIDE In any encounter, Créatúr shall read the animat(s) sensory out-
puts to determine the decision made by the animat(s).

FRAME-CONSEQ Créatúr shall implement the consequences of any decisionmade
by an animat to eat, mate, play, or ignore.

USR-DECIDE e implementation shall provide methods to read an animat’s
decision.

USR-DELTA e implementation shall provide the following information
about objects in the environment: delta energy if eaten, delta
passion if flirted with, delta boredom if played with.

USR-CONSEQ e implementation shall provide methods to ange an ani-
mat’s energy, passion, or boredom levels.

B.2.5 Learning

In accordance with the principle of combining AI and ALife [APR-AI-ALIFE], the
animats should have the ability to learn from their experiences. In accordance with
the principle of using multiple kinds of evolution [APR-MULT-EVO], some form
of Neural Darwinism should occur in the animat’s brain. us, the requirements
listed below were defined.

FRAME-THINK Aer an encounter, Créatúr shall give the animats involved the
opportunity to reflect on the outcome and learn from it.

USR-NEURALD e implementation of the animat’s brain shall incorporate a
form of Neural Darwinism.

B.2.6 Eating

Animats must eat in order to survive [ALIFE-EAT]. Furthermore, in accordance
with the principle of framing data analysis as a survival problem [APR-DATA-
SUR], the only way for animats to acquire energy is by eating an object. Some
objects may provide negative amounts of energy, making them poisonous. (How-
ever, eating poisonous food will only be fatal if it reduces the animat’s energy to
zero or below.) us, the requirements listed below were defined.

FRAME-EATNRG If an animat encounters an object and decides to eat it, Créatúr
shall adjust the animat’s energy by the amount of energy pro-
vided by the object.

228

B.2.7 Mating

In order to maintain the population, animats must mate [ALIFE-MATE]. In accor-
dance with the principle that there should be no free lun [APR-NO-FLUNCH],
animats must give up some energy in order to try to aract a potential mate. is
parallels the situation in biology where a male may have to fight off rivals, build a
nest, perform a mating display, etc. is “flirting tax” may encourage the animats
to oose mates that are more likely to be receptive. us, the requirements listed
below were defined.

FRAME-FLIRT Flirting shall have an energy cost.

B.2.8 Reproduction

Evolution requires that animat reproduction involve gene mixing, mutation, or
both [ALIFE-GENE]. In accordance with the principle of using diploid animats
[APR-DIPLOID], the requirements listed below were defined.

FRAME-GAMETE If both animats decide to flirt, Créatúr shall generate a ga-
mete from ea parent’s genes, applying crossover and random
mutation. It shall then combine the gametes to produce the
genome for the ild, and then construct a ild based on its
genome.

USR-GENOME e implementation shall provide a method that returns an an-
imat’s genome.

USR-BUILD e implementation shall provide a method that builds an an-
imat from a pair of gene sequences.

USR-EXPR e implementation shall provide a method whi, given a pair
of genes, determines how that gene shall be expressed in the
animat.

USR-ENCODE e implementation shall provide methods to encode a gene
sequence to a byte string, and decode a byte string into a gene
sequence.

USR-GENRTR If a gene sequence is encoded to a byte string, and subsequently
decoded, the result shall be identical to the starting sequence.

USR-DECALL All bytes strings shall be decodable into a gene sequence.

229

B.2.9 Birth

An animat must have some energy at birth (otherwise it would die immediately).
In accordance with the principle that there should be no free lun (see Section
3.2.6), the starting energy for the ild is donated by the parents. is parallels
biology where in some species, one or both parents must invest time and energy
before their offspring are born (e.g., keeping eggs warm, providing extra nutrition
for the mother). us, the requirements listed below were defined.

FRAME-CHINRG When an animat is born, a fraction of ea parent’s energy,
specified by the parent’s genome, shall be transferred to the
ild.

USR-DEVOTE e implementation shall provide a method to return the ani-
mat’s parental devotion.

B.2.10 Child-rearing

In accordance with the principle of protecting the young while they learn [APR-
NURTURE], the requirements listed below were defined.

FRAME-DAM When an animat is born, one parent shall arbitrarily be selected
to be the dam. e ild shall remain with the dam until the
ild matures or dies.

FRAME-CHIEXT In all encounters, a ild shall receive the same external sense
data as its parent.

FRAME-CHIINT In all encounters, aild shall receive sensory information about
its current state.

FRAME-CHISHA A ild shall share in the energy gains and losses of its dam,
according to a ratio specified in the dam’s genome.

FRAME-CHISEP When a ild reaes maturity, as specified by its genome, it
shall be separated from the dam.

USR-MATURE e implementation shall provide amethod to indicate whether
or not an animat is mature.

Note that requirement [USR-DEVOTE] defined in the previous section is also
relevant here.

230

B.2.11 Metabolism

In accordance with the principle that there should be no free lun (see Section
3.2.6), animats lose energy throughout their lives. is simulates a biologicalmetabolism.
us, the requirements listed below were defined. Note that the metabolism rate
may not be constant; it might be based on factors that ange, su as strength, or
the number of neural connections.

FRAME-METAB At the clo intervals specified in the configuration file, Créatúr
shall deduct energy from all animats, and increment ea ani-
mat’s age.

USR-METAB e implementation shall provide a method to calculate the en-
ergy cost of an animat’s metabolism.

USR-AGE e implementation shall provide a method to increment an
animat’s age.

B.2.12 Population

Créatúr should perform some basic maintenance functions. One of these is to
generate an initial population [ALIFE-INIT]. Consider that if a population falls
too low, it is unlikely to recover. e user may need to investigate why this has
occurred, whi may be easier to do while the system is still running. For this
reason, Créatúr should provide a way to replenish the population automatically.
(is replenishment is intended only as a diagnostic aid. In this resear project,
any population that requires replenishment is considered to be unsuccessful; this
is noted where the results are presented.)

Finally, in accordancewith the principle that there should be no fitness function
except survival [APR-NO-FIT], an animat only dies if its energy falls to zero. us,
the requirements listed below were defined.

FRAME-INITPOP e soware shall provide a meanism to generate an initial
population, with arbitrary genes, of a given size.

FRAME-MINPOP If the population falls below a pre-set minimum, a new animat
with random genes shall be generated and added to the popu-
lation.

FRAME-DEATH When an animat’s energy falls to zero, it shall be removed from
the population and arived.

USR-ARBGEN e implementation shall provide a method to produce an ar-
bitrary gene sequence suitable for an animat in the starter pop-
ulation.

231

B.2.13 Automation and maintenance

Créatúr runs as a daemon [ALIFE-DAEMON]. It must be reliable and robust; the
user should make the decision to halt a trial or continue, not the soware. us,
the requirements listed below were defined.

FRAME-DAEMON Créatúr shall run as a system daemon, with a meanism to
start, stop, or restart.

FRAME-NOHALT e soware shall not throw exceptions or otherwise halt in
response to an error.

FRAME-INDFILE Animats shall be saved in individual files.

FRAME-FILRTR e format of the save file shall be su that the animat read
from it is identical to the original.

FRAME-SAVE Aer an animat has an encounter with an object or another
animat, its state shall be saved.

USR-SER e implementation shall provide methods to serialise and de-
serialise animats.

USR-SERRTR If an animat is serialised and subsequently deserialised, the re-
sulting animat shall be identical to the the original.

B.2.14 Analysis tools

Créatúr must provide access to information about the animats while the experi-
ment runs [ALIFE-DATA]. us, the requirements listed below were defined.

FRAME-ID Créatúr shall assign a unique ID to all animats, whether born
or generated.

FRAME-LOG Créatúr shall provide a logging meanism.

FRAME-ROTATE Créatúr shall automatically rotate log files when they rea a
specified size.

FRAME-STATS Créatúr shall periodically log statistical information about the
population, including: population size, average age, average
energy, average passion level, average length of genome, aver-
age parental devotion, average maturation time.

232

USR-OBJAPP When an object is created, the implementation shall specify a
descriptive name for the object.

USR-STATS e implementation shall provide information about an ani-
mat, including: age, energy, passion level, length of genome,
parental devotion, maturation time.

233

Table B.2: Framework requirements traceability matrix

FRAME-… A
LI
FE

-E
A
T

A
LI
FE

-M
A
T
E

A
LI
FE

-G
EN

E

A
LI
FE

-O
PP

A
LI
FE

-I
N
IT

A
LI
FE

-D
A
EM

O
N

A
LI
FE

-D
A
TA

A
PR

-A
I-
A
LI
FE

A
PR

-D
A
TA

-E
N
V

A
PR

-D
A
TA

-S
U
R

A
PR

-M
U
LT
-E
V
O

A
PR

-N
O
-F
IT

A
PR

-N
O
-F
LU

N
C
H

A
PR

-N
U
R
T
U
R
E

A
PR

-D
IP
LO

ID

A
PR

-K
IN
SH

IP

APPEAR x
OBJSEN x x
ANISEN x x
NCHEAT x x
ENC x
RANOBJ x
RANANI x
COUNT x x
DECIDE x
CONSEQ x
THINK x
EATNRG x
FLIRT x x
GAMETE x x
CHINRG x
DAM x
CHIEXT x
CHIINT x
CHISHA x
CHISEP x
METAB x
INITPOP x
MINPOP
DEATH x
DAEMON x
NOHALT x
INDFILE x
FILRTR x
SAVE x
ID x
LOG x
ROTATE x
STATS x

234

Ta
bl
e
B
.3
:U

se
r
im
pl
em

en
ta
tio
n
re
qu
ir
em

en
ts
tr
ac
ea
bi
lit
y
m
at
ri
x.
C
ol
um

ns
w
ith

ou
tx
’s
ha
ve

be
en

el
im
in
at
ed

to
sa
ve

sp
ac
e.

ALIFE-GENE

APR-AI-ALIFE

APR-DATA-ENV

APR-DATA-SUR

APR-MULT-EVO

APR-NURTURE

APR-KINSHIP

FRAME-APPEAR

FRAME-APPGEN

FRAME-OBJSEN

FRAME-DECIDE

FRAME-CONSEQ

FRAME-EATNRG

FRAME-GAMETE

FRAME-CHINRG

FRAME-DAM

FRAME-METAB

FRAME-INITPOP

FRAME-NOHALT

FRAME-FILRTR

FRAME-SAVE

FRAME-LOG

FRAME-STATS

U
SR

-O
B
JA
PP

x
x

U
SR

-A
N
IA
PP

x
x

U
SR

-A
PP

G
EN

x
x

x
U
SR

-E
X
T
ER

O
x

x
x

U
SR

-I
N
T
ER

O
x

x
U
SR

-D
EC

ID
E

x
U
SR

-D
EL

TA
x

x
U
SR

-C
O
N
SE
Q

x
U
SR

-N
EU

R
A
LD

x
U
SR

-G
EN

O
M
E

x
U
SR

-B
U
IL
D

x
x

U
SR

-E
X
PR

x
x

U
SR

-E
N
C
O
D
E

x
x

U
SR

-G
EN

R
T
R

x
x

U
SR

-D
EC

A
LL

x
U
SR

-D
EV

O
T
E

x
U
SR

-M
A
T
U
R
E

x
x

U
SR

-M
ET

A
B

x
U
SR

-A
G
E

x
U
SR

-A
R
B
G
EN

x
U
SR

-S
ER

x
U
SR

-S
ER

R
T
R

x
U
SR

-O
B
JA
PP

x
U
SR

-S
TA

TS
x

235

Appendix C

Dote Genome

C.1 Gene encoding
e dote genome consists of instructions encoded as a series of bytes. e first
byte indicates the type of instruction, or gene, as shown in Table C.1.

Table C.1: Dote genes

byte 0 Gene

0 devotion gene

1 maturation time gene

2 start neuron gene

3 learning rule gene

4 forgeing rule gene

5 connection source gene

6 end neuron gene

7 colour gene

8 thinking time gene

9 to 0xFF no-op gene

e byte indicating the gene type may be followed by one or more bytes of
data. When the string is converted to a list of genes, one or more bytes containing
zeroes are added to the end if needed to fill in the missing data for the last gene in

236

the list. us, all byte strings are valid gene sequences; a dote can be constructed
from any byte sequence. e format of ea gene is explained below.

C.1.1 Devotion gene

Table C.2 shows the encoding of the devotion gene. e parameter devotion is a
number between 0 and 255 whi controls how mu energy parents share with
offspring. When the animat is created, this value is divided by 255 to yield a frac-
tion between 0 and 1.

Table C.2: Devotion gene

byte 0 byte 1

0 devotion

C.1.2 Maturation time gene

Table C.3 shows the encoding of the maturation time gene. e parameter time
is a 16-bit integer specifying the age at whi the animat becomes mature and is
separated from the dam.

Table C.3: Maturation time gene

byte 0 byte 1 byte 2

1 time

C.1.3 Colour gene

Table C.4 shows the encoding of the colour gene. e parameters red, green, and
blue are numbers between 0 and 255.

Table C.4: Colour gene

byte 0 byte 1 byte 2 byte 3

7 red green blue

237

C.1.4 Start neuron gene

Table C.5 shows the encoding of the start neuron gene.

Table C.5: Start neuron gene

byte 0

2

C.1.5 End neuron gene

Table C.6 shows the encoding of the end neuron gene.

Table C.6: End neuron gene

byte 0

6

C.1.6 Learning rule gene

Tables C.7, C.8, and C.9 show the encoding of the learning rule gene. e second
byte indicates the learning rule. Although the values 3 to 0xFF are reserved for
future learning rules, currently these values will select the ”No Learning” rule. e
parameter η specifies the learning rate. It is a number between 0 and 255. When
the animat is created, this value is divided by 255 to yield a fraction between 0 and
1.

Table C.7: Learning rule gene: Oja’s rule

byte 0 byte 1 byte 2

3 1 η

238

Table C.8: Learning rule gene: Hebb’s rule

byte 0 byte 1 byte 2

3 0 η

Table C.9: Learning rule gene: ”No Learning”

byte 0 byte 1

3 2

C.1.7 Forgetting rule gene

Tables C.10 and C.11 show the encoding of the forgeing rule gene. e second
byte indicates the forgeing rule. e values 2 to 0xFF are reserved for future
learning rules. Currently, however, these values will select the ”No Forgeing”
rule. e parameter ρ specifies the forgeing rate. It is a number between 0 and
255. When the animat is created, this value is divided by 255 to yield a fraction
between 0 and 1.

Table C.10: Forgeing rule gene: basic forgeing rule

byte 0 byte 1 byte 2

4 0 ρ

Table C.11: Forgeing rule gene: ”No Forgeing”

byte 0 byte 1

4 1

C.1.8 Connection source gene

Table C.12 shows the encoding of the connection source gene. e parameter source
is a 16-bit integer specifying the index number of the source neuron.

239

Table C.12: Connection source gene

byte 0 byte 1 byte 2

5 source

C.1.9 inking time gene

Table C.13 shows the encoding of the thinking time gene. e parameter time is
an 8-bit integer specifying the number of times the brain state is recalculated.

Table C.13: inking time gene

byte 0 byte 1

8 time

C.1.10 No-op gene

Table C.14 shows the encoding of theNo-op gene. A byte that cannot be interpreted
as part one of the genes described above will be treated as a no-op instruction.

Table C.14: No-op gene

byte 0

9 to 0xFF

C.2 Genetic dominance
Tables C.15 and C.16 illustrate how pairs of genes are expressed as a single instruc-
tion for building an animat.

240

Table C.15: Relation between alleles and genotype

allele 1 allele 2 blueprint instruction

NoopGene NoopGene NoopGene

DevotionGene x DevotionGene y DevotionGene x+y
2

MaturationTimeGene x MaturationTimeGene y MaturationTimeGene
x+y
2

inkingTimeGene x inkingTimeGene y inkingTimeGene x+y
2

ColourGene r1 g1 b1 ColourGene r2 g2 b2 ColourGene r1+r2
2

g1+g2
2

g1+g2
2

StartNeuronGene StartNeuronGene StartNeuronGene

LearningRuleGene lr1 LearningRuleGene lr2 See table C.16

EndNeuronGene EndNeuronGene EndNeuronGene

ConnectionSourceGene
x

ConnectionSourceGene
x

ConnectionSourceGene
min(x, y)

any other combination NoopGene

Table C.16: Expression of learning rule genes

Parent 2
Hebb y Oja y No learning

Parent 1
Hebb x Hebb x+y

2
Oja y No learning

Oja x Oja x Oja x+y
2

Oja x
No learning No learning Oja y No learning

241

Appendix D

Wain Genome

D.1 Gene encoding
e wain genome consists of instructions encoded as a series of bytes. e first
byte indicates the type of instruction, or gene, as shown in Table D.1.

Table D.1: Wain genes

byte 0 Gene

0 devotion gene

1 maturation time gene

2 exteroception capacity gene

3 interoception capacity gene

4 paern capacity gene

5 paern learning rate gene

6 paern learning rate decay gene

7 positive learning rate gene

8 negative learning rate gene

9 decider forgeing rate gene

10 Edelman cycle gene

11 appearance gene

12 to 0xFF no-op gene

242

e byte indicating the gene type may be followed by one or more bytes of
data. When the string is converted to a list of genes, one or more bytes containing
zeroes are added to the end if needed to fill in the missing data for the last gene in
the list. us, all byte strings are valid gene sequences; a wain can be constructed
from any byte sequence. e format of ea gene is explained below.

D.1.1 Devotion gene

Table D.2 shows the encoding of the devotion gene. e parameter devotion is a
number between 0 and 255. When the animat is created, this value is divided by
255 to yield a fraction between 0 and 1.

Table D.2: Devotion gene

byte 0 byte 1

0 devotion

D.1.2 Maturation time gene

Table D.3 shows the encoding of the maturation time gene. e parameter time
is a 16-bit integer specifying the age at whi the animat becomes mature and is
separated from the dam.

Table D.3: Maturation time gene

byte 0 byte 1 byte 2

1 time

D.1.3 Exteroception capacity gene

Table D.4 shows the encoding of the exteroception capacity gene. e parameter
exteroceptionCapacity is a 16-bit integer specifying the number of external inputs;
whi is also the length of the input vector to the SOM.

243

Table D.4: Exteroception capacity gene

byte 0 byte 1 byte 2

2 exteroceptionCapacity

D.1.4 Interoception capacity gene

Table D.5 shows the encoding of the interoception capacity gene. e parameter
interoceptionCapacity is an 8-bit integer specifying the number of internal inputs.
e length of the input vector to the Decider is the sum of the interoceptionCapac-
ity value and the paernCapacity value specified by the paern capacity gene.

Table D.5: Interoception capacity gene

byte 0 byte 1

3 interoceptionCapacity

D.1.5 Pattern capacity gene

Table D.6 shows the encoding of the paern capacity gene. e parameter paern-
Capacity is an 8-bit integer specifying the number of internal inputs. e length
of the input vector to the Decider is the sum of the paernCapacity value and the
interoceptionCapacity value specified by the interoception capacity gene.

Table D.6: Paern capacity gene

byte 0 byte 1

4 paernCapacity

D.1.6 Pattern learning rate gene

Table D.7 shows the encoding of the paern learning rate gene. e parameter
rate is a number between 0 and 255. When the animat is created, this value is
divided by 100 to yield a number between 0 and 2.55.

244

Table D.7: Paern learning rate gene

byte 0 byte 1

5 rate

D.1.7 Pattern learning rate decay gene

Table D.8 shows the encoding of the paern learning rate decay gene. e param-
eter rate is a number between 0 and 255. When the animat is created, this value is
divided by 255 to yield a fraction between 0 and 1.

Table D.8: Paern learning rate decay gene

byte 0 byte 1

6 rate

D.1.8 Edelman cycle gene

Table D.9 shows the encoding of the Edelman cycle gene. e parameter tis is a
number between 0 and 255.

Table D.9: Paern learning rate gene

byte 0 byte 1

11 tis

D.1.9 Decider learning rate genes

Table D.10 shows the encoding of the positive learning rate gene. Table D.11 shows
the encoding of the negative learning rate gene. e parameter rate is a number
between 0 and 255. When the animat is created, this value is divided by 10 to yield
a number between 0 and 25.5.

245

Table D.10: Positive decider learning rate gene

byte 0 byte 1

7 rate

Table D.11: Negative decider learning rate gene

byte 0 byte 1

8 rate

D.1.10 Decider forgetting rate gene

Table D.12 shows the encoding of the decider forgeing rate gene. e parameter
rate is a number between 0 and 255. When the animat is created, this value is
divided by 10 to yield a number between 0 and 25.5.

Table D.12: Decider forgeing rate gene

byte 0 byte 1

9 rate

D.1.11 Appearance Gene

Table D.13 shows the encoding of the appearance gene. e parameter pixel is a
number between 0 and 255 indicating a grey-scale value in the wain’s appearance.

Table D.13: Appearance Gene

byte 0 byte 1

10 pixel

D.1.12 No-op gene

Table D.14 shows the encoding of the no-op gene. A byte that cannot be interpreted
as part one of the genes described above will be treated as a No-op instruction.

246

Table D.14: No-op gene

byte 0

9 to 0xFF

D.2 Genetic dominance
Table D.15 indicates how pairs of alleles result in a single instruction being added
to the blueprint.

247

Table D.15: Relation between alleles and genotype

allele 1 allele 2 blueprint instruction

NoopGene NoopGene NoopGene

DevotionGene x DevotionGene y DevotionGene x+y
2

MaturationTimeGene x MaturationTimeGene y MaturationTimeGene
min(x, y)

ExteroceptionCapacity-
Gene x

ExteroceptionCapacity-
Gene y

ExteroceptionCapacity-
Genemin(x, y)

InteroceptionCapacity-
Gene x

InteroceptionCapacity-
Gene y

InteroceptionCapacity-
Genemin(x, y)

PaernCapacityGene x PaernCapacityGene y PaernCapacityGene
min(x, y)

PaernLearningRate-
Gene x

PaernLearningRate-
Gene y

PaernLearningRate-
Gene x+y

2

PaernLearningRate-
DecayGene x

PaernLearningRate-
DecayGene y

PaernLearningRate-
DecayGene x+y

2

PositiveDecider-
LearningRateGene
x

PositiveDecider-
LearningRateGene
y

PositiveDecider-
LearningRateGene
x+y
2

NegativeDecider-
LearningRateGene
x

NegativeDecider-
LearningRateGene
y

NegativeDecider-
LearningRateGene
x+y
2

DeciderForgeingRate-
Gene x

DeciderForgeingRate-
Gene y

DeciderForgeingRate-
Gene x+y

2

AppearanceGene x AppearanceGene y AppearanceGene x+y
2

any other combination NoopGene

248

