
Unsupervised Noise Detection in Unstructured data
for Automatic Parsing

Shubham Jain∗ , Amy de Buitléir† , and Enda Fallon∗
∗Software Research Institute, Athlone Institute of Technology, Athlone, Ireland

sjain@ait.ie efallon@ait.ie
†Network Management Lab, Ericsson, Athlone, Ireland

amy.de.buitleir@ericsson.com

Abstract—The telecommunications industry makes extensive
use of data extracted from logs, alarms, traces, diagnostics, and
other monitoring devices. Analyzing the generated data requires
that the data be parsed, re-structured, and re-formatted. Devel-
oping custom parsers for each input format is labor-intensive and
requires domain knowledge. In this paper, we describe a novel
unsupervised text processing pipeline to automatically detect
and label relevant data and eliminate noise using Levenshtein
similarity and Agglomerative clustering. We experiment with
different similarity and clustering algorithms on a selection of
common data formats to verify the accuracy of the proposed
technique. The results suggest that the proposed methodology
has higher accuracy.

Index Terms—Unsupervised Data Mining, Information Extrac-
tion, Clustering, Similarity

I. INTRODUCTION

Telecommunications networks contain a wide variety of
types of equipment, each of which may generate large volumes
of diagnostic information, including system logs, alarms,
traces, diagnostics, and other monitoring devices. Much of
the data is in free-form text format, and there is a business
need to automatically identify useful information and convert
it to a format that can be used to monitor and maintain the
network. Network monitoring requires data exploration and
machine learning applications such as anomaly detection [1],
cognitive management [2], incident management, autonomous
problem validation [3], root cause analysis and many more.
Such applications can identify and diagnose network issues
and generate insights that can help optimize the network and
make network management more efficient. With the growing
complexities of the network due to 5G and virtualization, it
is important to find an efficient solution for processing this
free-form data [4].

Currently, handling free form textual data has two ap-
proaches, 1) manual handling by domain experts and 2)
natural language processing with supervised learning. Manual
handling requires the development and maintenance of a
large number of custom parsers and thus is labor-intensive.
The natural language approach has been widely researched
and implemented in recent years [5]. However, this method
requires extremely large labeled (annotated) training sets,

Name
Container RegistryContainer-

Optimized OS

NOISE DATA

Fig. 1: An Illustrative Example of Noise detection

which are labor-intensive to create. A simple illustration is
shown in Fig. 1 where a text document is analyzed, and the
resulting output has noise and data separated. As seen in the
figure, noise are the input lines 1-6 and 8 are extraneous; they
are not useful for exploratory data analysis. In contrast, lines 7
and 9-11 contain information that can be parsed and analyzed.

In this paper, we introduce an unsupervised text analysis
pipeline that identifies extraneous information and segregates
it from relevant data and parses it into a structured format.
The technique is domain-independent and does not require
a training set. It is resilient to changes in the structure and
formatting of data. The process is automatic and requires no
input from a domain expert. A similarity matrix is created
and used to cluster the lines of text. Each cluster is identified
as containing either noise or relevant information for parsing.
We compare combinations of various similarity and clustering
algorithms and present each combination’s accuracy in this
paper’s later section. Towards the end, we provide the most
accurate and optimal pipeline with similarity and clustering
algorithms for unsupervised noise detection and parsing.

This paper is organized as follows: §II describes an
overview of existing approaches for data parsing. We present
our methodology in §III. We discuss our evaluation method
and compare results of different combinations in §IV and
conclude in §V.

II. RELATED WORK

In this section, we discuss the different approaches for
data extraction from free-form data. These methods can be978-3-903176-31-7 © 2020 IFIP

classified into heuristics-based and machine learning-based
techniques.

Heuristics-based parsing was presented by the authors of
Iterative Partitioning Log Mining (IPLOM) [6]. They focused
on template-construction by using a three-step hierarchical
process; partitioning, word distribution and splitting the mes-
sages into the constant and variable part. Another heuristics-
based approach was implemented by the authors of Log key
Analysis (LKE) [7] where they clustered messages based on
pre-defined weights and rules. Both these approaches worked
well for similar structures in a data file. These approaches are
not generic enough to apply tor different structures across a
large scale system and manual updates are required when the
structure of data changes.

The authors of [8] evaluated various rule-based parsers
such as SLCT [9], IPLOM, LogSig [10] on 16 datasets and
concluded that log analysis techniques are not accurate and
further claimed that even slight error in pre-processing can
cause a huge performance degradation on applications such
as anomaly detection [11] [12] [1], cognitive management [2],
autonomous problem validation [13] [3], incident management
or root cause analysis.

An unsupervised approach using Long-short-Term-Memory
Neural Network was introduced by the authors of LogRobust
[14]. They converted each log line into fixed dimension
semantic vector. The sequence of semantic vectors were used
to process noise during collection and pre-processing of data.
However, the approaches only works well with linguistic mes-
sages and falls short on identifying and filtering components
such as timestamp, separators and other extraneous lines in an
unevenly distributed file format. Furthermore, the approaches
are sensitive towards change in the structure of the file and
require manual cleaning of a file before processing it for
automatic parsing. We presented a detailed review of the
applications and technologies for unstructured data analysis
in [15].

III. METHODOLOGY

In this section, we present the implementation of our noise
detection pipeline that is domain-independent, segregates ex-
traneous information, and parses the required format without
the need for labeled training data.

As illustrated in Figure 2, the proposed noise detection
pipeline consists of three main phases. Phase I focuses on
loading our data and removing redundant spaces and special
characters in phase II, where each line is compared with all
the other lines in the file, to generate a similarity matrix. This
similarity matrix is then normalized and provided as an input
to the clustering algorithm in phase III. The clustering algo-
rithm identifies two different clusters, and based on heuristic
rules, the cluster containing noise is identified. The detailed
description of each phase is provided in the next sections.

1

2

3

4

5

Unstructured Text File

Pre-processing

Similarity Matrix

Normalization

Clustering

Feature
R

epresentation

N
oise

Identification
and Elim

ination
Loading and
processing

6 Validation and Storing
Jaro-

W
inker

 Jaro

Levensh-
tein

C
osine

K
M

eans

M
eanShift

Spectral

A
gglom

er-
ative

D
B

SC
A

N

A
ffinity

Propaga-
tion

Fig. 2: Methodology: Unstructured Data Analysis and Parsing Pipeline

A. Feature Representation

We preprocess the file and remove consecutive special
characters and white-spaces using regular expressions. After
processing the file, we use similarity algorithms to compare
each line with other lines inside the file. We experimented
with several edit-distance-based similarity algorithms such
as Levenshtein distance [16] to calculates the number of
operations such as insertions, updations or deletions required
to transform string x into string y where x and y are lines of
length |x| and |y| in our text file. resulting distance lies on
the closed interval [0,1], where 0 indicates no similarity and
1 indicates complete equality between lines. The formula for
Levenshtein distance is given in Equation 1

levx,y =

max(i, j) if min(i, j) = 0

min

levx,y(i− 1, j) = 1

levx,y(i, j − 1) = 1 otherwise

levx,y(i− 1, j − 1) = 1

(1)

Jaro distance is another similarity algorithm; it computes
the number of common characters in two strings and identifies
patterns in character deviation [17]. The Jaro similarity of two
strings x and y is given in Equation 2

simj =

{
0 if c = 0
1
3

(
c
|x| +

c
|y| +

c−t
c

) (2)

where c is number of matching characters and t is the number
of transpositions from x and y.

Jaro-Winkler [18] is another edit-distance-based similarity
algorithm that uses a fixed prefix scale p yielding much better
scores to strings that match from the beginning index. The

Jaro-Winkler similarity of two strings x and y is given in
Equation 3

simw = simj + lp(1− simj) (3)

where l is the length of prefix and p is the prefix in the
beginning of a line. We set a default value 0.1 to p as a value
greater than 0.25 can make similarity larger than 1.

Furthermore, we convert our strings x and y to vectors
xv and yv and implement Cosine Similarity that computes
the cosine angle between two nonzero vectors. The cosine
similarity ranges from [-1,1] where -1 indicates no similarity
and 1 indicates total similarity and is given in Equation 4.

cos(θ) =
xv · yv

||xv|| ||yv|| (4)

Algorithm 1 Similarity Matrix

1: procedure CALCULATESIMILARITY
2: Algorithm ← [Levenshtein, Jaro, Rosetta Jaro, Co-

sine]
3: df ← Read File
4: ScoreList ← []
5: for df.iterrows() do
6: for dfi.iterrows() do
7: xi ← df[data].Read Line 1
8: yi+1 ← df[data].Read Line 2
9: score ← callAlgorithm(xi, yi)

10: ScoreList ← append(score)
11: i ← i + 1
12: end for
13: dfi ← append(ScoreList)
14: end for
15: end procedure

A feature representation matrix is generated by using the
similarity algorithms describes above. Our algorithm is illus-
trated in Algorithm 1. We start reading lines from the input
file and pass them as parameters to our desired similarity
algorithm that returns a similarity score. We then compare
each line’s score and create a list representing a similarity
score of linei. Thus, if there are ten lines in the input text
file, then this will generate ten different lists, merged to form
a matrix of comparison between each line. After the matrix
was generated, there was a need to normalize the scores and
bring them to a range of [-1,1]. Some algorithms, such as
Jaro, Jaro-Winkler, and Cosine, generated a matrix with close
minimum and maximum values, but Levenshtein generated
outputs with a higher difference in minimum and maximum
values. Thus, we applied SimHash [19] to our similarity
matrix as it performs dimensionality reduction by putting
similar vectors closer in a low-dimensional vector space. Our
experiments and results are discussed in §IV. The output of the
most efficient algorithm is identified to facilitate downstream
noise detection algorithms.

Algorithm Metric Automatic Clustering
K-Means Distance-based N

Mean Shift Distance-based Y
Spectral Graph-based N

Agglomerative Pair-wise distance N
DBSCAN Nearest-Point Distance Y

Affinity propagatoion Graph-based Y

TABLE I: Summary of Clustering Algorithms

Clustering Algorithm Accuracy% Accuracy(SimHash)%
K-Means 43 44

Mean Shift 56 51
Spectral 71 88

Agglomerative 90 62
DBSCAN 84 68

Affinity propagation 76 54

TABLE II: Accuracy: Jaro Similarity with Clustering Algorithms

B. Noise detection and Elimination

Since our main objective is to identify noise from a collec-
tion of lines generated from various nodes, we perform clus-
tering to segregate relevant data and noise. We implemented
six clustering algorithms from the sklearn.cluster module of
scikit-learn [20] to identify the best combination of clustering
and feature representation in the pipeline. Table I describes
a summary of clustering algorithms and provides details on
the clustering algorithm’s metric. The last column provides
information on the clustering algorithms that identify the
number of clusters in our data without user input.

Our method focuses on forming two clusters, one with noise
and other with relevant data that can be parsed and analyzed.
We also experimented with three clusters to detect components
such as noise, data, and header.

Finally, after we cluster our data, we generate labels for
each line where cluster one is labeled as 0, and cluster two
is labeled as 1. We assign these labels to each line and
generate two files segregating both the cluster labels. We run
both the files through a set of rules that identifies the cluster
that contains noise. Our rules focus on identifying lines with
consecutive white-space at an index followed by a comparison
of line sizes in each cluster. The data required for analysis in
table form and contains components such as header, rows,
columns, and cells. In an individual sample, the data rows
have a similar number of columns, and comparing the mean
of the size of each row with the size of each row had a higher
difference in the noisy cluster. The algorithm for identification
of the noisy cluster is presented in Algorithm 2.

IV. EVALUATION AND DISCUSSION

In this section, we present the results of the methodology
discussed in the earlier section. We present the most accurate
algorithm for the generation of the similarity matrix and
clustering. We also discuss the dataset and evaluation metrics
for analyzing the results of our unsupervised noise detection
algorithm. We present the accuracy for each combination of
pipeline and present it in the results subsection.

Algorithm 2 Noise Detection after clustering

1: procedure CALCULATESIZE(inputdf)
2: df ← inputdf
3: SizeList ← []
4: for df.iterrows() do
5: line ← df[data].Read
6: lineSize ← len(len)
7: SizeList ← append(lineSize)
8: df ← append(SizeList)
9: end for

10: end procedure
11: procedure CALCULATEDIFF(inputdf)
12: df ← inputdf
13: DiffList ← []
14: mean ← [SizeList].mean()
15: for df.iterrows() do
16: Size ← df[SizeList].Read
17: difference ← Size - Mean
18: DiffList ← append(difference)
19: df ← append(DiffList)
20: end for
21: end procedure
22: procedure IDENTIFYNOISECLUSTER(inputdf0,inputdf1)
23: df0 ← inputdf0
24: df1 ← inputdf1
25: meanDiff0 ← df0[diffList].mean()
26: meanDiff1 ← df1[diffList].mean()
27: if meanDiff0 > meanDiff1 then
28: noiseCluster ← 0
29: else
30: noiseCluster ← 1
31: end if
32: end procedure

Clustering Algorithm Accuracy% Accuracy(SimHash)%
K-Means 77 74

Mean Shift 68 54
Spectral 51 54

Agglomerative 86 78
DBSCAN 91 73

Affinity propagation 44 30

TABLE III: Accuracy: Jaro-Winkler Similarity with Clustering Algorithms

Clustering Algorithm Accuracy% Accuracy(SimHash)%
K-Means 62 76

Mean Shift 45 42
Spectral 65 44

Agglomerative 96 84
DBSCAN 90 68

Affinity propagation 85 73

TABLE IV: Accuracy: Levenshtein with Clustering Algorithms

Clustering Algorithm Accuracy% Accuracy(SimHash)%
K-Means 71 65

Mean Shift 54 42
Spectral 67 44

Agglomerative 82 79
DBSCAN 84 81

Affinity propagation 77 77

TABLE V: Accuracy: Cosine Similarity with Clustering Algorithms

A. Dataset and Evaluation

We use a collection of an anonymized dataset from a
telecommunications vendor and various open-source samples
from ntc-templates1 that provides free-form, unstructured text
from a variety of network vendors to evaluate each pipeline of
algorithms. We labelled each line with noise and data labels
to evaluate the accuracy of our unsupervised approach.

Our algorithm identifies lines that resemble a table-like
structure in a single unstructured text-heavy file. Our pipeline
processed an individual sample file and categorized it into
noise and relevant data. Our evaluation method consists of
manually labeling each input and determining the accuracy of
the processed file by comparing it with the manual labels.
We then take a mean of the accuracy of the 50 samples
and calculate F1-score [21] for each pipeline to identify the
pipeline’s actual accuracy.

B. Results

Tables II through V report the accuracy of each pipeline
in this section. Each table presents two accuracy metrics,
one with the unmodified similarity matrix, and one with
SimHash applied to the similarity matrix. Table II shows the
accuracy of the pipeline where the matrix is generated using
the Jaro similarity algorithm with the combination of different
clustering algorithms and normalized data. The accuracy of
clustering algorithms with Jaro-Winkler is shown in Table III.
Table IV and Table V shows the accuracy of the pipeline with
Levenshtein and Cosine similarity algorithms with clustering
algorithms, respectively.

The results suggest that the pipeline that detects noise
with the highest accuracy is the one where the feature repre-
sentation matrix is generated using the Levenshtein distance
algorithm, and the matrix is clustered using Agglomerative
hierarchical clustering. The lower accuracy when SimHash
was used suggests that dimensionality reduction removes the
necessary features required for the classification of data.

V. CONCLUSIONS

This research describes a text processing pipeline to iden-
tify extraneous information and segregate it from relevant
data. The proposed pipeline behaves as an intermediary step
between data collection and data analysis. This approach
categorizes lines without the need for a domain expert and
does not require labeled training data. This research provides

1https://pypi.org/project/ntc-templates

a significant improvement over traditional data cleaning meth-
ods by domain experts in terms of cost and resources.

ACKNOWLEDGMENTS

This work is funded by Irish Research Council Enterprise
Partnership Scheme Postgraduate Scholarship 2020 under
Project EPSPG/2020/7.

REFERENCES

[1] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System
log analysis for anomaly detection,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, oct
2016.

[2] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba,
F. Estrada-Solano, and O. M. Caicedo, “Machine learning for cognitive
network management,” IEEE Communications Magazine, vol. 56, no. 1,
pp. 158–165, jan 2018.

[3] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin, “Assisting developers of big data analytics applications when
deploying on hadoop clouds,” in 2013 35th International Conference
on Software Engineering (ICSE). IEEE, 2013, pp. 402–411.

[4] S. Satpathi, S. Deb, R. Srikant, and H. Yan, “Learning latent events
from network message logs,” IEEE/ACM Transactions on Networking,
vol. 27, no. 4, pp. 1728–1741, 2019.

[5] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed, “Deepdesrt:
Deep learning for detection and structure recognition of tables in
document images,” in 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR), vol. 1. IEEE, 2017,
pp. 1162–1167.

[6] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A lightweight
algorithm for message type extraction in system application logs,” IEEE
Transactions on Knowledge and Data Engineering, vol. 24, no. 11, pp.
1921–1936, 2011.

[7] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in 2009 ninth
IEEE international conference on data mining. IEEE, 2009, pp. 149–
158.

[8] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on
log parsing and its use in log mining,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2016, pp. 654–661.

[9] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in Proceedings of the 3rd IEEE Workshop on IP Operations &
Management (IPOM 2003)(IEEE Cat. No. 03EX764). IEEE, 2003, pp.
119–126.

[10] L. Tang, T. Li, and C.-S. Perng, “Logsig: Generating system events
from raw textual logs,” in Proceedings of the 20th ACM international
conference on Information and knowledge management. ACM, 2011,
pp. 785–794.

[11] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009, pp. 117–132.

[12] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in 2009 Ninth
IEEE International Conference on Data Mining. IEEE, dec 2009.

[13] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging existing instrumentation to automatically infer invariant-
constrained models,” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering. ACM, 2011, pp. 267–277.

[14] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 807–817.

[15] S. Jain, A. de Buitléir, and E. Fallon, “A review of unstructured data
analysis and parsing methods,” in 2020 International Conference on
Emerging Smart Computing and Informatics (ESCI), 2020, pp. 164–
169.

[16] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, Feb
1966.

[17] M. A. Jaro, “Advances in record-linkage methodology as applied to
matching the 1985 census of tampa, florida,” Journal of the American
Statistical Association, vol. 84, no. 406, pp. 414–420, 1989.

[18] W. E. Winkler, “String comparator metrics and enhanced decision rules
in the fellegi-sunter model of record linkage.” 1990.

[19] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, 2002, pp. 380–388.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[21] T. Joachims, “A support vector method for multivariate performance
measures,” in Proceedings of the 22nd international conference on
Machine learning, 2005, pp. 377–384.

