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Abstract. We present a simple brain architecture that allows agents
to recognise patterns and make decisions based on those patterns. It
takes into account not only the type of situation the agent thinks it is
facing, but also how confident the agent is in its assessment, and possible
alternatives. An agent using this brain was applied to two classification
tasks: handwritten numeral recognition and spoken numeral recognition.
In both cases, its accuracy was comparable to more traditional classifiers.
This suggests that the new architecture could be useful as a general-
purpose brain, for agents in a variety of domains.
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1 Introduction

Decision-making is the ability of an animal to choose an action from a set of
possible actions. In goal-directed decision-making, the animal weighs the antici-
pated reward (e.g., food) against the cost (e.g., energy expenditure) [1]. Thus, a
good decision-making process, and the ability to learn from previous decisions,
improve the animal’s chance of survival. The same logic can be used by artificial
(software) agents as well as animals.

Wains are an artificial life species created for data mining. For wains, data
mining is a survival problem. In order to stay alive, they must discover patterns
in the data, build a model of the data, classify new data based on the model,
decide how to respond to data, and adapt to changes in the patternicity of the
data [2].

De Buitléir et al.[2] demonstrated that a population of wains can indeed dis-
cover patterns, make survival decisions based on those patterns, and adapt to
changes in the patternicity. Individual wains learned to make better decisions
during their lifetimes, and evolution optimised the (genetic) operating parame-
ters of their brains over a few generations. Several directions for future research
were identified, including improving the wain’s decision-making process, and
implementing cultural transmission (allowing children to learn by observing the
actions of their parents, and adults to learn by observing their peers).
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The original brain design used a self-organising map (SOM) as a classifier,
with a neural network to make decisions [2]. A SOM is a technique for represent-
ing high-dimensional data in fewer dimensions (typically two), while preserving
the topology of the input data[3]. As part of the work to improve the wain’s
decision-making process, the SOM algorithm was modified for artificial life; we
call the modified version a self-generating model (SGM). The SGM has been
presented previously [4]. In this paper, we build on that work by redesigning the
brain to use one SGM to classify inputs, and a second to predict the outcome of
possible actions. The process is explained in Section 2.2.

It has already been demonstrated that wains can learn through trial and
error; [2]; we now wish to show that they can be taught. The focus of this paper
is on the individual wain rather than a population, but the wain will trained using
the same mechanism that allows wains to learn from one another. In addition
to demonstrating the decision-making ability of the wain, we hope to show that
a wain can be a useful general-purpose classifier (one that might be used when
specialised classifiers are not available).

To demonstrate how the new design could be used as a general-purpose brain,
for agents in a variety of domains, we will demonstrate that it can classify two
very different types of data: images and audio. Common classification tasks such
as handwriting recognition and Automatic Speech Recognition (ASR) have ben-
efitted from years of research, resulting in classifiers that are designed and fine-
tuned for specific types of data. Since the wain is intended as a general-purpose
data miner, we do not expect it to outperform a domain-specific classifier. In-
stead, we hope to demonstrate that wains can provide comparable accuracy.

The image data consists of handwritten numerals; the wain will attempt to
identify the numeral. To evaluate the performance of the brain at handwriting
recognition, we compare it with a traditional classifier. Other classification tech-
niques can achieve better accuracy at handwriting recognition than the SOM,
for example, support vector machines [5] and traditional neural networks [6].
However, the wain’s new brain design is partly based on modified SOMs (see
Section 2.2). For this reason, we chose the SOM as the benchmark.

The audio data consists of spoken numerals; again the wain will attempt to
identify the numeral. One widely used ASR technique is hidden Markov models
(HMM) [7]. The hidden Markov model toolkit (HTK) provides the ability to
construct and manipulate HMMs [8]. HTK is widely used for speech recognition
research, making an HMM-based classifier implemented using HTK a suitable
benchmark.

As will be explained in Section 2.2, a wain maintains a set of internal models
for the range of objects that it has encountered. These internal models need
not (and usually do not) map directly to human categories. Based on the re-
semblance between a stimulus and its internal models, the wain chooses, from a
predefined set, the response that it predicts will lead to the greatest happiness.
Then how can we get a wain to perform classification? By making the set of
available responses be classifications! By using the wain as a classifier, we are
also demonstrating its ability to make good decisions.
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2 Implementation

This project uses a computational ecosystem called Créatúr1. Créatúr is both a
software framework for automating experiments with artificial life, and a library
of modules that can be used (with or without the framework) to implement
agents. The system architecture is illustrated in Figure 1. The package creatur

provides the ecosystem. The package creatur-wains provides a general-purpose
implementation of a wain, creatur-image-wains contains tools for working with
images, and creatur-audio-wains contains tools for working with audio feature
files.

creatur-audio-wains

creatur

creatur-image-wains

creatur-wains

"four"

creatur

creatur-wains

chosen response chosen response

Fig. 1. System architecture for working with MNIST images (left) and TIDIGITS
feature files (right). The rectangles represent software packages. A horizontal boundary
between two packages indicates that the upper package calls functions provided by the
lower package. For example, creatur-wains calls functions provided by creatur, and
creatur-image-wains calls functions provided by creatur-wains, but also makes calls
directly to functions provided by creatur.

The wain implementation has been described in detail elsewhere [2]; a sum-
mary is provided below, which focuses on the features used in the experiments
presented in this paper and highlights changes that have been made to the im-
plementation.

2.1 Condition

Wains have an energy level from 0 to 1. They gain or lose energy as a result of
the reward system, which is unique to the type of experiment. For example, a
wain might be rewarded for accurately identifying a pattern. If a wain’s energy
falls below 0, it dies. Wains also have a boredom level and a passion level, each
from 0 to 1. Depending on the reward system, boredom might be decreased as a
result of novelty-seeking behaviour. The wain’s passion level is set to 0 at birth

1 Créatúr (pronounced kray-toor) is an Irish word meaning animal, creature, or un-
fortunate person.
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or as a result of mating, and increases at a genetically determined rate until the
next mating. (A “genetically determined” value is one that is specified by an
agent’s genes, can be different for each agent, is inherited by offspring, and is
subject to evolutionary pressures.) Collectively, the wain’s energy level, passion
level, boredom level, and whether or not it is currently rearing a child, are called
its condition.

Wains seek to maximise their happiness, which is given by

happiness = wee + wp(1− p) + wb(1− b) + wll, (1)

where e is the wain’s energy level; p its passion level; b its boredom level; l is
1 if the wain is currently rearing a child, 0 otherwise; and we, wp, wb, wl are
genetically-determined weights. The weights are normalised so that the happi-
ness is from 0 to 1.

2.2 The brain

The brain has three components: a classifier, a muser, and a predictor. This
structure is fixed; however, evolution can fine-tune operating parameters such
as the learning rate. The classifier maintains a model of the space of patterns
encountered, the muser generates possible responses to situations, and the pre-
dictor maintains a model of the space of responses selected.

Both the classifier and predictor use a modified SOM called a self-generating
model (SGM) [4]. In a SOM, the models are arranged on a two-dimensional grid;
in an SGM the models form an unconnected set. Unlike a SOM, the SGM does
not preserve the topology of the input space. Another difference is that the SOM
has a fixed number of models, but the number of models in the SGM is variable.
When the difference (according to a chosen metric) between the input pattern
and the closest matching model exceeds a predefined threshold, and the SGM
is not at capacity, the SGM creates a new model based on the input pattern.
Therefore, while the SOM must be initialised with a set of models (possibly
random data), the SGM can begin empty, adding new models as needed to
reflect the diversity of the input data.

The process by which the brain makes decisions is illustrated in Figure 2.
When one or more patterns are presented to the agent, the classifier produces a
signature, a vector whose elements indicate how similar each input pattern is to
each classifier model, and reports this to the brain.

For each object and model, the brain estimates the probability that the
object actually belongs to the category represented by the model. This is a
simple calculation,

pi =
1− di

|1− di|
,

where pi is a vector where each element pij is the estimated probability that
object i belongs to the category represented by model j, and d is a vector where
each element dij is the difference between object i’s pattern and model j.
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Fig. 2. The decision-making process

The brain generates hypotheses by considering each possible combination of
object and model. The estimated probability for each hypothesis is the product
of the individual object-model probabilities. Next, the muser chooses one or more
of the most likely hypotheses (the number of hypotheses chosen is genetically
determined), and generates a set of responses to evaluate.

The predictor then estimates how each proposed response will affect each
aspect of the agent’s condition (energy, passion, boredom, litter size). It does
this by selecting the response model that best matches the proposed response,
and returning the condition changes predicted by that model, adjusted according
to the probability that the hypothesis is true. If no response model is sufficiently
similar, a new model may be created.

The brain combines the agent’s current condition with the predicted changes,
and calculates the resulting happiness change, according to Equation 1. The
brain chooses the action that is predicted to have the most favourable (most
positive or least negative) effect on happiness. After the agent has received any
rewards or penalties as a result of that action, the predictor adjusts its models
according to the actual change in happiness.

By considering more than one hypothesis, the agent can employ more subtle
reasoning. It can base its actions not only on what scenario it thinks it is facing,
but also on how confident it is, and what is likely to happen if the agent is wrong.
For example, suppose the agent considers two hypotheses, where the estimated
payoff (happiness increase) is given by Table 1. If the agent is reasonably confi-
dent that the more likely hypothesis is actually true, the best response is action
#1. Otherwise, it may be worth the gamble to go for action #2, in hope of the
large payoff.
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Table 1. Sample payoff matrix

payoff if more likely payoff if less likely
hypothesis is true hypothesis is true

action #1 medium small
action #2 small large

The brain can also learn as a result of imprinting, which is a shortcut where
the agent is shown one or more patterns and an action, and concludes that
taking the action in a similar situation would optimise its condition, maximising
its happiness. This can be used to allow children to learn by observing their
parents, or for adults to learn by observing other adults. Although this feature
was originally intended to allow wains to learn from each other, it can also be
used by the operator to train wains.

3 Experimental Setup

The methods used for the experiments presented in this paper are described
below. These experiments use an individual wain rather than a population, but
the wain is trained using the same mechanism that allows wains to learn from
one another.

3.1 Images

The MNIST database is a collection of images of hand-written numerals that
is a useful benchmark for comparing classification methods [9]. The training set
contains 60,000 images, while the test set contains 10,000 images. All images
are 28x28 pixels, and are grey-scale. The numerals are centred within the image.
The centre of pixel mass of the numeral has been placed in the centre of the
image. A sample image is shown in Figure 3.

Fig. 3. Sample MNIST image of a handwritten “2” [9].

Images from the MNIST database were used without modification. We pre-
sented the images to the agent as a sequence of integers. Each element of the
sequence was a number from 0 to 255, indicating the intensity of the pixel. The
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agent was not given any information about the geometry of the image. For ex-
ample, it did not know that in a 28x28 image, the 29th pixel is immediately
below the first pixel.

The brain was configured to use the mean of absolute differences (MAD)
as a measure of difference between an input image and the classifier models.
This is calculated by taking the absolute difference between each pair of cor-
responding pixels, and taking the mean to obtain a number from 0 (identical)
to 1 (maximally dissimilar). All the images in the MNIST database have the
same size, viewing direction (normal to the plane of the image, from above), and
comparable intensity, so the MAD is an appropriate difference metric.

The learning function of the SOM is given by Equation 2,

f(d, t) = re−
d2

2w2 , (2)

where

r ≡ r0

(
rf
r0

)a

, w ≡ w0

(
wf

w0

)a

, and a ≡ t

tf
.

The function input d is the distance between the node being updated and the
winning node; t is the “time”, a counter of the number of patterns learned so far.
The parameter r0 is the initial learning rate, rf is the learning rate at time tf , w0

is the radius of the initial neighbourhood, wf is the radius of the neighbourhood
at time tf , and a indicates the brain’s “age”.

For the winning node, d = 0, and Equation 2 reduces to Equation 3, which
is the learning function for the SGM.

f(t) = r = r0

(
rf
r0

)a

. (3)

Note that at all times the learning rate of the SGM matches the learning rate
of the winning node in the SOM. This permits a fairer comparison of the SOM
and the SGM.

Table 2 shows the configuration of the two classifiers. The values r0 and rf
were chosen so that the learning rate would start at maximum and be near
zero by the end of training. The values w0 and wf were determined empirically.
The value of tf is the number of training images. To determine the difference
threshold, we tried a range of values near the mean difference between images
of the same numeral, and chose the one that resulted in the best accuracy.

3.2 Audio samples

The TI46 speech database is a corpus of 46 isolated spoken words recorded
for both male and female speakers. The corpus is intended for the evaluation of
ASR products [10]. The words in the corpus include the numerals “zero” through
“nine”. In the experiments presented in this paper, only numerals are used. The
training set contains 1,594 samples of spoken numerals; the test set contains
2,541 samples.
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Table 2. Configuration for working with MNIST images

variable SOM brain

final node count 1024 956
grid type rectangular unconnected nodes

classifier r0 1 1
classifier rf 1×10−15 1×10−15

classifier w0 3 not applicable
classifier wf 1×10−7 not applicable
classifier tf 60000 60000

classifier threshold not applicable 0.12
predictor r0 not applicable 1×10−9

predictor rf not applicable 1×10−10

predictor tf 60000 60000
predictor threshold not applicable 0.1

We extracted the MFCC feature vectors from the samples in the TI46 corpus
using the HCopy tool provided as part of HTK [8]. Each frame had 13 static
coefficients (cepstral coefficients C1-C12 and energy). The corresponding velocity
and acceleration coefficients were also calculated to give 39 coefficients per frame.
First order pre-emphasis was applied using a coefficient of 0.97. There were 23
filterbank channels and 22 cepstral liftering coefficients. The frame rate used was
10 ms with a 25ms Hamming window. The feature vectors for each audio sample
were concatenated, in time order, and presented to the brain as a sequence of
double-precision floats.

The HMM-based classifier is implemented using the HTK Speech Recognition
Toolkit[8]. There are ten whole word HMMs, one for each numeral, each of which
has three states, with each state having three Gaussian mixtures. For working
with non-endpointed samples, two additional models are defined to represent
pauses in speech, sil and sp. The sil model has three states and each state has
six mixtures. The sp model has a single state.

End-pointing is the process of removing silence from the beginning and end
of an audio sample, in order to simplify the classification task. The short-term
energy for each frame is calculated as the sum of the absolute values of the sample
amplitudes in the frame. End-pointing is performed by determining whether or
not the short-term energy of successive frames is above a defined threshold (to
determine the start of the utterance) or below a defined threshold (to determine
the end of the utterance). For example, to get the start point, look for three
consecutive frames with energy exceeding the threshold; the first frame of the
three is assumed to be the start of the utterance.

The brain was configured to use the square of the Euclidean distance as a
measure of difference between an input sample and the classifier models. The
length of samples differs, so the resulting number of vectors in each sample differs
as well. However, brains require that all input patterns have the same length.
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Therefore, the agent was configured to “stretch” or “compress” the samples as
needed so they all have the same number of vectors. Stretching is achieved by
duplicating vectors; the duplications were distributed as evenly throughout the
pattern as possible.

The algorithm for compressing samples is straightforward. First, calculate
the differences between each consecutive pair of vectors. Second, find the vector
with the smallest change from the previous one, and drop it. These two steps
are repeated until the sample is of the desired length.

Table 3 shows the configuration of the brain. The values r0 and rf were
chosen so that the learning rate would start at maximum and be near zero by
the end of training. The values w0 and wf , and the number of vectors, were
determined empirically. The value of tf is the number of training images. To
determine the difference threshold, we tried a range of values near the mean
difference between samples of the same numeral, and chose the one that resulted
in the best HMM accuracy.

Table 3. Configuration of brain for working with audio samples

variable as-is samples end-pointed samples

classifier r0 0.1 0.1
classifier rf 0.001 0.001
classifier tf 1594 1594

difference threshold 0.00018 0.00018
predictor r0 0.1 0.1
predictor rf 0.001 0.001
predictor tf 1594 1594
num. vectors 159 154

3.3 Training and testing

The general procedure for working with either images or audio samples is the
same. In both cases, the training data set and the test data set are distinct; we
used the standard training and test sets for both the MNIST and TI46 data.
First, we presented the training patterns in random order to the agent, along
with the correct identification. This was done using imprinting, as described at
the end of Section 2.2.

Next, we presented the test patterns to the agent, again in random order. As
each pattern was presented, the agent responded with an identification. For a
fair comparison with the SOM or HMM, we needed to prevent learning during
the testing phase. To achieve this, each time the wain responded, we restored
it to the state it had at the end of the training (imprinting) phase. Although
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the wain’s condition never actually changes, it continues to expect an increase
in happiness, and to take that into account when making decisions.

4 Results and interpretation

Table 4 compares the image classification performance of the brain with that of
the SOM. The accuracy of both methods is comparable. Training and testing the
brain required less than half the time of the SOM. The reduction in processing
time occurs primarily because the SGM only updates one model during training,
while the SOM updates the models in the neighbourhood of the winning node.

Table 4. Comparison of image classification results

classifier SOM brain
no. models 1024 941

numeral accuracy
0 0.952 0.9408
1 0.970 0.9736
2 0.837 0.9109
3 0.835 0.8634
4 0.725 0.6609
5 0.739 0.8341
6 0.967 0.9415
7 0.873 0.7772
8 0.753 0.7956
9 0.834 0.7929

all 0.853 0.8508

time 6273s 2514s

Table 5 compares the audio classification performance of the brain with that
of the HMM. The accuracy of both methods is comparable, however, the brain
is significantly slower. The brain was slightly more accurate when working with
the as-is data than with the end-pointed data. The compression algorithm has
the side-effect of removing some of the silence from the beginning and end of the
sample, thus an extra end-pointing step is not required.

The code and results for the experiments presented in this paper are open
access [11–13]. A tutorial for Créatúr is available [14].

5 Conclusion

The wain was applied to two classification tasks: handwritten numeral recogni-
tion and spoken numeral recognition. In both cases, its accuracy was compara-
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Table 5. Comparison of audio classification results

data type as-is end-pointed
classifier HMM brain HMM brain

word accuracy
“zero” 1.0000 1.0000 1.0000 0.9840
“one” 1.0000 0.9882 1.0000 0.9922
“two” 1.0000 1.0000 1.0000 1.0000

“three” 1.0000 0.9881 1.0000 0.9961
“four” 1.0000 1.0000 1.0000 0.9961
“five” 1.0000 1.0000 1.0000 0.9961
“six” 0.9961 0.9961 1.0000 1.0000

“seven” 1.0000 0.9922 1.0000 0.9961
“eight” 1.0000 1.0000 1.0000 0.9883
“nine” 0.9881 0.9763 1.0000 0.9802
all 0.9984 0.9941 1.0000 0.9929

time <1m 14m <1m 12m

ble to more traditional classifiers. This suggests that wains could be useful as a
general-purpose classifier, applied to a variety of domains.

Why should anyone be interested in a new classifier that is no more accurate
than traditional classifiers, and for audio, is significantly slower? One advantage
is that the new brain design is not just a classifier; it also makes decisions by
choosing the action that leads to the best predicted outcome. In the experiments
described in this paper, the only available actions were to choose a classification;
however, other types of actions could also be performed. Another advantage
to the new design is its generality; it could be used in domains where custom
classifiers have not yet been developed.

As this is a new approach to pattern recognition and decision-making, there
is scope for improvement. Accuracy could be improved by choosing more sophis-
ticated distance metrics. For images, the MAD could be replaced with a metric
that takes into account a pixel’s neighbours. This might allow it to cope better
with writing that is heavily slanted, or is thinner or thicker than typical writing.
For audio samples, a variable frame rate analysis such as that suggested by Le
Cerf and Van Compernolle[15] could be used. The run-time of the software is
dominated by the comparisons between models, so performance could also be
improved by choosing a different distance metric.

Although a single wain was used in these experiments, wains were designed
to be used in a population. The configuration parameters are genetic, so it is
possible to have a population of wains with varying configurations. Awarding
energy for accurate classifications would encourage evolution to find a range of
suitable configurations. Wains have the ability to teach their young, as well as
other adults, so each generation can augment the species’ knowledge. A popula-
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tion of wains with slightly different configurations, and different life experiences,
could give independent opinions on a classification.
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