
Data Mining Using Artificial Life with
Popperian-level Intelligence

by

Amy de Buitléir

A thesis submied in partial fulfilment of the

requirements for the Ph.D. in

Soware Engineering

Athlone Institute of Technology

2017

Supervisors: Mark Daly and Michael Russell

Faculty of Engineering and Informatics

Declaration

I hereby certify that this material, which I now submit for assess-

ment on the programme of study leading to the award of PhD is

entirely my own work and has not been taken from the work of

others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed:

Student ID: A00168093

Date:

Contents

Abstract 6

Anowledgements 7

List of Figures 8

List of Tables 10

Preface 11

1 Introduction 13
1.1 Document structure . 15
1.2 Major contributions . 18
1.3 Conventions used in this thesis 20

2 Literature review 21
2.1 Artificial Intelligence . 21
2.2 Artificial Life . 26
2.3 Evolution . 27
2.4 Denne’s Tower of Generate-and-Test 28
2.5 Reproduction . 32
2.6 Gene expression . 33
2.7 Data mining . 34
2.8 Agent-based approaches to data mining 37
2.9 e SOM algorithm . 38
2.10 Wains . 40
2.11 Automatic speech recognition 44
2.12 Functional programming concepts 46

2.12.1 Domain-specific languages 47
2.12.2 Monads . 47
2.12.3 Datatype-generic programming 48

3

2.13 Data sets . 49
2.13.1 MNIST . 49
2.13.2 TI46 . 50
2.13.3 ISP traffic . 50
2.13.4 New York City weather data 51

2.14 Summary . 52

3 Approa 57

4 Improving the Créatúr framework 60
4.1 Artificial Life genetics and recombination 62
4.2 Gene encoding . 65
4.3 Reproduction . 68
4.4 Gene recombination . 71
4.5 Gene expression . 73
4.6 Constructing an agent from its genome 76
4.7 Limitations . 82
4.8 Summary . 83

5 Improving the wain 85
5.1 Architecture . 85
5.2 Condition . 88
5.3 Metabolism . 91
5.4 Appearance . 91
5.5 Brain . 92
5.6 Genetics and reproduction . 93
5.7 Child-rearing . 95
5.8 Summary . 95

6 e Self-generating model 97
6.1 Self-Generating Model . 102
6.2 Experimental set-up . 103

6.2.1 Experiment 1: Early accuracy 104
6.2.2 Experiment 2: Full training run 106

6.3 Results and interpretation . 107
6.3.1 Experiment 1: Early accuracy 107
6.3.2 Experiment 2: Full training run 107

6.4 Summary . 112

4

7 Improving the brain 114
7.1 Seeking inspiration . 114
7.2 Making decisions . 115
7.3 e SGM and genetics . 117
7.4 A new brain architecture . 118
7.5 Summary . 124

8 Classification with wains 125
8.1 Experimental set-up . 127

8.1.1 Classifying images . 128
8.1.2 Classifying audio samples 129
8.1.3 Training and testing . 133

8.2 Results and interpretation . 134
8.3 Summary . 136

9 Forecasting with wains 138
9.1 Experimental set-up . 138

9.1.1 Predicting ISP traffic . 139
9.1.2 Predicting weather . 143

9.2 Results and interpretation . 147
9.3 Summary . 152

10 Conclusions 155
10.1 Synopsis . 155
10.2 Conclusions . 159
10.3 Future directions . 160

10.3.1 Making decisions and managing systems 161
10.3.2 Improved configurations 162
10.3.3 Smarter agents . 163

Glossary 164

Acronyms 178

Bibliography 179

Appendices 205

A An introduction to Haskell 206

B A heuristic approa to configuring experiments with wains 209

5

Abstract

is thesis proposes a strategy for developing Artificial Life (ALife) agents

with Artificial Intelligence (AI) that are capable of performing a variety of data

mining tasks, and demonstrates it using agents called wains.

ere is a continuing need for new data mining techniques, especially to

cope with data paerns that change over time, or to process data streams in

real-time. While data mining has adopted heavily from AI (especially as regards

machine learning), the use of ALife has been restricted to agents with only rudi-

mentary intelligence (e.g., swarm intelligence, ant colony optimisation). ese

Skinnerian creatures (inDenne’s terminology) only learn through operant con-

ditioning, a trial-and-error method, which means they are likely to try a number

of “stupid” moves before discovering the “smart” moves.

Wains live in an environment of pure data; for them, discovering paerns in

data is a survival problem. ey were also Skinnerian creatures. In this research

project they were given the ability to decide which actions are worth evaluat-

ing and to predict the outcome of an action, making them Popperian creatures

(in Denne’s terminology). e new wains were shown to be capable of ex-

tracting knowledge from complex data sets in a variety of domains, including

images, audio samples, ISP traffic, and weather. Based on the literature review,

this is the first time an ALife species with Popperian-level AI has been applied

to data mining. is is a new direction, but a promising one, as shown by the

experimental results presented in this thesis.

Anowledgements

Many people have contributed in variousways tomy research over the years,

and to this thesis. First, I would like to thankmy supervisors, Dr. Mark Daly and

Mike Russell at AIT, for their guidance and enthusiastic support. I enjoyed some

“geek pilgrimages” to the annual DublinMaker Faire withMark, andmany fruit-

ful lunchtime discussions over ai food. Mike helped me identify my dreams

and make them come true. His keen editorial eye taught me to be a beer writer.

I would also like to thank my external supervisor, Prof. Daniel Heffernan at

Maynooth University, for his suggestions and warm encouragement.

I have been fortunate to interact regularly with the talented researchers at

Ericsson in Athlone. Dr. Sven van der Meer gave me loads of excellent ad-

vice about research and publication. e many lunchtime discussions we had

about wains always filled me with energy, enthusiasm, and confidence. Dr. John

Keeney could always be relied on for practical, down-to-earth advice; he helped

me keep my sense of humour. I enjoyed several philosophical discussions with

Dr. MingXue Wang about the nature of artificial life. I am also grateful to John

O’Regan, also at Ericsson, who arranged the funding for my PhD, and provided

time and resources to support my research.

I would also like to thank Ronan Flynn at AIT for suggesting that I apply

wains to the task of automated speech recognition, provided a data set to work

with, and directed me to resources for learning about ASR.

List of Figures

1.1 Key topic dependencies . 16

2.1 Topic map . 22
2.2 Dennet’s Tower of Generate-and-Test 29
2.3 Sample images from the MNIST database 50

4.1 Crossover . 71
4.2 Cut-and-splice . 71

5.1 Architecture for a typical experiment. 86

6.1 Decision-making using a classifier that preserves topology. . . . 98
6.2 Decision-making using a classifier that does not preserve topology. 99
6.3 Early accuracy comparison . 108
6.4 Small SOM aer all training images have been presented. 109
6.5 Small SGM aer all training images have been presented. 109
6.6 Model stability in SOM and SGM. 110
6.7 Model usage in SOM and SGM. 111
6.8 Processing time for SOM and SGM. 111
6.9 SOM and SGM accuracy . 112

7.1 e decision-making process. 119
7.2 A simple p-score function. 120
7.3 A more sophisticated p-score function. 120

8.1 Architecture for classifying images and audio samples. 128

9.1 Architecture for predicting stream data. 139
9.2 SMA forecasting of ISP traffic with different window widths. . . 147
9.3 WMA forecasting ISP traffic with different window widths. . . . 148
9.4 Error in ISP traffic prediction. 149
9.5 SMA forecasting of next day’s high temperature with different

window widths. 150

8

9.6 WMA forecasting of next day’s high temperature with different
window widths. 150

9.7 Error in next day’s high temperature prediction. 151

9

List of Tables

2.1 Missing records in New York City weather data 51

4.1 e Recombination DSEL. 74
4.2 e Reader DSEL. 77
4.3 e DiploidReader DSEL. 80

6.1 Configuration of SOM and SGM in Experiment 1. 105
6.2 Analysis of MAD between MNIST images. 106
6.3 Configuration of SOM and SGM in Experiment 2. 107

7.1 Example of a signature . 118
7.2 Unnormalised probabilities for signature in Table 7.1. 121
7.3 Normalised probabilities from Table 7.2. 121
7.4 Hypotheses based on probabilities in Table 7.3. 122
7.5 Sample payoff matrix. 123

8.1 Configuration for working with MNIST images 130
8.2 Examples of stretching, illustrated using a character string . . . 131
8.3 Configuration of brain for working with audio samples. 132
8.4 Comparison of image classification results. 134
8.5 Comparison of audio classification results. 135

9.1 Configuration for predicting ISP traffic. 141
9.2 Gene pool of initial population for predicting ISP traffic. 142
9.3 Configuration for predicting next day’s high temperature. . . . 145
9.4 Gene pool of initial population for predicting next day’s high

temperature. 146

10

Preface

Some passages in this thesis have been quoted verbatim from the papers listed

below, which were wrien during my PhD research.

Paper I. Amy de Buitléir, Mark Daly, Michael Russell, and Daniel Heffer-

nan. A functional approach to sex: Reproduction in the Créatúr

framework. In Jurriaan Hage and Jay McCarthy, editors, Trends in

Functional Programming: 15th International Symposium, TFP 2014,

Soesterberg, e Netherlands, May 26-28, 2014. Revised Selected Pa-

pers, volume 8843 of Lecture Notes in Computer Science, pages 68-83.

Springer International Publishing, 2015. ISBN 978-3-319-14674-4.

Paper II. Amyde Buitléir, MarkDaly, andMichael Russell. e Self-Generating

Model: an Adaptation of the Self-organizing Map for Intelligent

Agents and Data Mining. Proceedings of the Second International

Symposium on Artificial Life and Intelligent Agents, Birmingham,

14-15 June 2016. (In Press) Springer.

Paper III. Amy de Buitléir, Ronan Flynn, Michael Russell and Mark Daly. An

architecture for paern recognition and decision-making. In Elio

Tuci, Alexandros Giagkos, Myra Wilson and John Hallam, editors,

11

From Animals to Animats 14: 14th International Conference on Sim-

ulation of Adaptive Behavior, SAB 2016, Aberystwyth, UK, August

23-26, 2016, Proceedings, pp. 22–33, Springer International Publish-

ing, Cham.

12

Chapter 1

Introduction

is thesis describes a research project to discover if Artificial Life (ALife) agents

with Artificial Intelligence (AI) are capable of performing data mining. e

project builds upon an earlier research project [1, 2] I undertook during 2009-

2011 in pursuit of an MSc. e goal of that project was “to evolve an ALife

populationwith sufficient intelligence to discover paerns in data andmake sur-

vival decisions based on those paerns, and to create a population that adapts

to its environment through both evolution and lifetime learning” [1, p. 9]. e

products of that research included a computational ecosystem, or framework,

for artificial life experiments, called Créatúr1, and a species of artificial agents,

called wains2, which had evolved the ability to discover paerns in data and

make decisions based on those paerns.

e research described in this thesis builds upon the foundation of my MSc

research by applying lessons learned and exploring new directions. One of the
1Créatúr, which is pronounced /cɾʲeːt ̪ɣ uːɾˠ/ [KRAY-toor], is an Irish word for an animal, or

an unfortunate person.
2Wain (rhymes with “rain”, or alternatively, with “mean”) is a word for “child”, commonly

used in Donegal and Northern Ireland.

13

findings of the earlier research was that wains too frequently made unwise de-

cisions, given their knowledge of the environment. As a result, my first focus

was finding a means to improve their decision-making ability. Denne’s Tower

of Generate-and-Test [3, 4, p. 83-98, 5, p .258-262] provided a useful framework

for thinking about the cognitive power of agents, whether biological or artificial.

Using Denne’s terminology, most ALife agents are either Darwinian creatures

(which have a fixed design, and can only adapt to their environment through

evolution) or Skinnerian creatures (which can learn through a form of operant

conditioning). In contrast, a Popperian creature has a sort of “mental laboratory”

where they can “try out” an action and predict the results, giving them more

cognitive power than Skinnerian or Darwinian creatures. is pointed the way

for improving the decision-making ability of wains, i.e., redesign their brains to

raise them to the Popperian level. us we have the first research question of

this thesis:

Researestion 1: Will givingwains a mechanism to predict the

outcomes of possible actions, and to choose the action with the best

predicted outcome, make them beer decision-makers?

Earlier research showed that wains could discover paerns in data. is led

to my second focus, discovering if these improved Popperian wains could per-

form data mining. ere is a continuing need for new data mining techniques,

especially to cope with data paerns that change over time, or to process data

streams in real-time. Aer considering the various types of tasks included under

the data mining umbrella, I decided that Popperian wains would be most likely

to succeed at classification and forecasting. is led to the following research

14

questions:

Resear estion 2: Can Popperian wains learn to classify data

with accuracy and speed comparable to traditional classificationmeth-

ods?

Resear estion 3: Can Popperian wains learn to forecast fu-

ture values in a data stream, with accuracy and speed comparable

to traditional forecasting methods?

e research described in this thesis aims to answer these three research

questions.

1.1 Document structure

In this section I describe the content of each chapter, and highlight the thought

process that connects the chapters. Figure 1.1 shows the dependencies between

key topics.

Chapter 2 (Literature review) establishes the theoretical basis for this re-

search project, drawing inspiration from computer science, philosophy, and bi-

ology. A brief history of AI is presented, and the definition of “intelligence” is

considered. A summary of different forms of ALife follows, and its relation to AI

is introduced. Denne’s Tower of Generate-and-Test is discussed in more detail,

focusing on the adaptive advantages of Popperian creatures over those at lower

levels in the tower. Evolution and its relationship to both biological and artificial

life is presented, followed by gene expression and the benefits of sexual repro-

duction for the adaptability of an organism. e growing importance of data

15

Ch. 4
Framework

Ch. 5
Wains

Ch. 6
SGM

Ch. 7
Brain

Ch. 8
Classification

Ch. 9
Forecasting

genetics
support

reward
system

free/directed
mating

wain
genes

wain
happiness

SGM
design

wain
condition

brain
design

classification
experiment

forecasting
experiment

wain
configuration

configuration
heuristics

SGM
experiment

Figure 1.1: Key topic dependencies. An arrow from one topic to another indi-
cates that the second topic requires an understanding of the first topic.

mining is discussed, along with the role of ALife in data mining. One particular

data mining tool, the Self-Organising Map (SOM), is presented, seing the stage

for a version of this algorithm adapted for ALife as part of this research project.

Wains are then described in more detail. Since Automated Speech Recognition

(ASR) is used in one of the experiments described in later chapters, the funda-

mental concepts are introduced here. Functional programming concepts such as

monads, the Domain-Specific Embedded Language (DSEL) and datatype-generic

programming, used in this research project; are explained. Finally, the data sets

which were used in experiments for this project are introduced.

Chapter 3 (Approach) describes the reasoning behind my choice to make

wains Popperian creatures, and to apply them to classification and forecasting

rather than other data mining tasks.

16

In preparation for the experiments conducted as part of this research project,

several improvements were made to the Créatúr framework. ese improve-

ments were not strictly required to answer the research questions, but theymade

the framework much easier to use, both by the author and future researchers.

One of the most significant improvements is a mechanism that allows any data

type to be used as a gene, with automatic support for for encoding, decoding,

recombination, and expression. Chapter 4 (Improving the Créatúr framework)

describes issues commonly faced by developers of ALife, and shows how the

new framework addresses them.

Extensive changes were made to the wains as part of this research; discus-

sion of those changes is split over the next three chapters. Chapter 5 (Improv-

ing the wain) describes the non-brain-related improvements. One of the most

significant improvements is an extensible architecture allowing wains to cus-

tomised to work with different types of data.

e core of thewain brain is a modified SOM. Chapter 6 (e Self-generating

model) describes how and why the SOM was adapted for use in wains, produc-

ing the Self-Generating Model (SGM). e SGM could be suitable for a variety

of intelligent data mining ALife agents, and as a standalone classifier. A series

of experiments comparing the performance of the SOM and SGM is presented.

Although the experiments do not answer any of the original research questions,

they demonstrate the advantages of the SGM.

Chapter 7 (Improving the brain) describes how thewain brainwas redesigned

to make wains Popperian creatures, with the hope that the resulting increase

in cognitive power would allow them to perform data mining tasks. e new

brain is built upon two SGMs.

17

In Chapter 8 (Classification with wains), a series of experiments designed

to answer research questions 1 (are Popperian wains beer decision-makers?)

and 2 (can they perform classification?) is presented.

Chapter 9 (Forecasting with wains) presents a series of experiments de-

signed to answer research question 3 (can Popperian wains perform forecast-

ing?).

Chapter 10 (Conclusions) provides a synopsis of the thesis, presents some

conclusions about this research project, and proposes future directions for re-

search continuing on from, or inspired by, this project.

A Glossary, list of Acronyms, and Bibliography are provided. Appendix A

provides a short introduction toHaskell Syntax. Appendix B discusses themethod-

ology used in configuring experiments.

1.2 Major contributions

e major contributions of this work are summarised below.

• A proposed approach for creating artificial life that is smart enough to

perform data mining; namely, instead of designing agents specifically for

data mining, design them with general-purpose intelligence, with brains

that place them at the Popperian (or higher) level in Denne’s Tower of

Generate-and-Test.

• A design for a Popperian ALife brain. is design allows an agent to gen-

erate hypotheses about the scenario it is facing, consider the actions avail-

able to it, predict the outcome of each action for each hypothesis, and

18

choose the action that is likely to produce the best outcome.

• A re-design and re-implementation of wains to give them Popperian-level

AI and allow them to perform classification and forecasting, with an ac-

curacy that is comparable to traditional methods.

• A re-design and re-implementation of Créatúr, a library and framework

for creating ALife and running ALife experiments. Any data type can be

used as a gene; it will inherit default mechanisms for gene encoding, de-

coding, recombination, and expression. Créatúr supports both sexual and

asexual reproduction, with a flexible language to control recombination

and mutation.

• e SGM, a modified SOM that was adapted for use in intelligent data

mining ALife agents. By sacrificing topology-preservation, the SGM re-

quires fewer calculations, making it faster than a SOM of comparable size.

e SGM achieves a higher accuracy more quickly than the SOM, which

could allow an agent to make good survival decisions with less training.

With greater model stability (the ability of a model to continue to match

paerns it was created in response to, while adjusting to match new pat-

terns) and fewer wasted models (models that will not be used to classify

future paerns), the SGM could be a useful component for implementing

intelligent agents, and for other clustering or classification applications.

19

1.3 Conventions used in this thesis

When discussing a range of possible values for a variable, the notation [a, b]

indicates a closed interval (one that contains the endpoints), i.e., {x : a <=

x <= b}.

In this thesis, a wain is sometimes referred to using the more generic term

“agent”. is is done in statements that could apply to both wains and other

types of agents. For example, the brain design described in Chapter 7 could be

used in agents other thanwains. us, that chapter frequently refers to “agents”.

An individual representation of a paern that an agent has observed in the

environment is called a “model”. the collection of all such representations that

the agent has formed is called a “model set”. ere is one exception to this

convention: SGM stands for “Self-generatingModel”, where “model” in this case

refers to a model of the input paern space.

20

Chapter 2

Literature review

As shown in Figure 2.1, this research project incorporates concepts from com-

puter science, philosophy, and biology. is chapter introduces those concepts,

describes the application domains to be focused upon, establishes the theoreti-

cal basis for this research, and describes the data sets used in the experiments

performed as part of this research.

2.1 Artificial Intelligence

Artificial Intelligence (AI) refers to programs or machines which exhibit intelli-

gent behaviour. Unfortunately, the word “intelligent” is difficult to define satis-

factorily. e definitions below will illustrate some common themes.1

“Ability to learn or having learned to adjust oneself to the environ-

ment.” S. S. Colvin, quoted by Sternberg [7, p. 8]
1For more definitions of “intelligence”, see Legg and Huer [6], Sternberg [7, p. 8], and Ra-

paport [8].

21

C
o
m

pu
te

r S

cie
nce

Philosoph
y

Bi
ol

og
y

Artificial
intelligenceArtificial

life
Data

mining

Automatic
speech

recognition

Self-organising
maps

Functional
programming

Monads

Domain-specific
languages

Datatype-generic
programming

Definitions of
"intelligence"

Tower of
Generate-and-Test

Evolution

Sexual
reproduction

Genetics

wains

Figure 2.1: Topic map

“e aggregate or global capacity of the individual to act purpose-

fully, think rationally, and deal effectively with his environment.”

Wechsler and Matarazzo [9, p. 79]

“Part of the internal environment that shows through at the inter-

face between person and external environment as a function of cog-

nitive task demands.” R. E. Snow, quoted by Legg and Huer [6]

“e power of good responses from the point of view of truth or

facts.” E. L. orndike, quoted in [7, p. 8]

“Behaviour that we call intelligent behaviour when we observe it in

human beings.” Slagle [10, p. 1]

22

eabove definitions illustrate some important aspects of intelligence: learn-

ing, adapting to the environment, acting purposefully to achieve a goal, and

providing logical responses given one’s knowledge.

In the 1940s, a number of important developments laid the foundation for

AI. McCulloch and Pis [11] showed that any computable function could be

represented by a network of artificial neurons. Hebb [12, Ch. 4] described a

way that these artificial neural networks might learn.

Now computer scientists could begin to take seriously the idea of imple-

menting human-level intelligence in a machine. Turing [13] proposed the now

famous Turing Test which states that a computer could be said to think if a hu-

man interrogator could not distinguish between it and another human through

typed conversation. Turing [13] concluded that by the end of the 20th century,

a computer would be built that could pass the test.

e birth of AI as a field of research happened in the summer of 1956, with

a workshop at Dartmouth College in New Hampshire [14, p. 18]. e event

was organised by John McCarthy, who coined the phrase “artificial intelligence”

[15]. Other aendees includedMarvinMinsky (a well-known cognitive scientist

who later founded the MIT Artificial Intelligence Lab in 1959 with McCarthy

[16]), and Claude Shannon (who founded information theory). e conference

proposal stated “is study is to proceed on the basis of the conjecture that

every aspect of learning or any other feature of intelligence can in principle be

so precisely described that a machine can be made to simulate it.” [17]

eDartmouth conference ushered in a period of rapid progress inAI. Samuel

[18] developed a program to play checkers (draughts) which learned from ex-

perience. e STUDENT program, developed by Bobrow [19], solved algebra

23

problems wrien in a subset of English. Winograd [20] developed the SHRDLU

program, which could carry on a natural dialog with a human about a world of

blocks. Evans’ ANALOGY program could solve geometric analogy problems of

the type found in IQ tests [21, Section 6.1].

ese events fostered a feeling of optimism in the AI community. Simon

[22, p. 96] wrote in 1965 “machines will be capable, within twenty years, of

doing any work a man can do”. Two years later, Minsky [23] wrote “Within

a generation, I am convinced, few components of intellect will remain outside

the machine’s realm – the problems of creating ‘artificial intelligence’ will be

substantially solved.”

In the 1970s cracks began to appear in the AI foundation. Tasks such as

recognising a face, or navigating a room without bumping into obstacles turned

out to be far more difficult than anticipated. is turnabout became known as

Moravec’s paradox: “it is comparatively easy to make computers exhibit adult

level performance on intelligence tests or playing checkers, and difficult or im-

possible to give them the skills of a one-year-old when it comes to perception

and mobility” [24]. In 1972 Karp [25] showed that many problems in computer

science are NP-complete, that is, computationally intractable. e time required

to solve such problems using known algorithms increases rapidly with the size

of the inputs, suggesting that many of the known AI solutions would never scale

into useful systems. ese and similar setbacks led to a lack of funding which

characterised the “AI Winter” of the 1970s [21, p. 477, 14, p. 21][26, p. 154].

Eventually AI techniques became fashionable again, although typically un-

der other names. In the 1980s, corporations around the world became interested

in expert systems, applications that use a knowledge base of human expertise to

24

make decisions [27, 14, p. 9]. In the 1990s, improvements in data mining (ex-

tracting insight from data) made interest in this field increase dramatically [28,

p. 6]. From the 1990s onward, AI played a crucial role in computer games: pro-

ducing intelligent behaviour on the part of game characters not controlled by

the player. e reduction in cost of computer hardware predicted by Moore’s

Law allowed previously infeasible projects to be tackled. IBM Watson, which

won on the quiz show “Jeopardy” in 2011, had access to four terabytes of data

[29]; this amount of storage would have been unthinkable decades earlier.

To an outsider, the history of AI may look like a long string of failures and

disappointing results. ere are two reasons for this. Firstly, whenever an AI

research project is successful, it usually becomes a new scientific or commer-

cial specialty with a new name [30]. is happened, for example, with robotics,

expert systems, automatic theorem proving, machine vision, knowledge engi-

neering and computational linguistics [30]. is leaves the field of AI with lile

to claim but unsolved problems, and solutions in “toy domains” that do not scale

to the real world.

e second reason for the apparent lack of success is the “AI Effect”. As

mentioned earlier, observers generally choose to call an AI system intelligent if

its behaviour would be considered intelligent when performed by a human (Sla-

gle’s definition). However, as soon as the mechanism by which the AI system

achieves its goals is explained, the observer narrows the definition of intelli-

gence to exclude the behaviour in question. As Kahn [31] wrote, “Every time

we figure out a piece of it, it stops being magical; we say, ‘Oh, that’s just a

computation’. We used to joke that AI means ‘almost implemented’.” More suc-

cinctly, Hofstadter [32, p. 601] quotes Tesler’s eorem: “AI is whatever hasn’t

25

been done yet”.

2.2 Artificial Life

Artificial Life (ALife) is a field which aempts to create life-like behaviour us-

ing soware, hardware, biochemistry or other media; this thesis focuses on so-

ware. Whereas biology is the study of “life-as-we-know-it”, ALife is the study of

“life-as-it-could-be” [33]. ALife is not only used as a simplified model of biolog-

ical life and ecosystems; it is also increasingly applied to real-world problems as

diverse as data mining [34], music composition [35], and management of dam

operations in multi-reservoir river systems [36].

Automata of various kinds (for example, the cuckoo clock) existed long be-

fore the computer age, however they performed a predetermined sequence of

actions, or responded in a predetermined way to inputs. With the advent of

computers, it became possible to create far more flexible and life-like systems.

One of the earliest such systems was developed by John von Neumann as a re-

sult of his work on self-replicating machines. Von Neumann [37] had shown

that such a machine was possible, but had not suggested an implementation

[38, p. 2]. It is believed that the mathematician Stanislaw Ulam suggested the

use of what are now known as cellular automata to von Neumann [38, p. 3].

A cellular automaton consists of a grid of cells. At the initial step, each cell

is in one of a finite number of states, such as on or off. At each successive step,

the cells in the grid are assigned a (possibly new) state based on a predetermined

rule. Depending on the rules, paerns can form that persist over long periods

of time or interact in complex and interesting ways. e most famous cellular

26

automaton is called e Game of Life; it was developed by John Conway [39].

In 1987, Christopher Langton organised the first ALife conference, “Work-

shop on the Synthesis and Simulation of Living Systems” [40]. Since then, the

field has developed in a variety of directions. ALife has been used to model

group motion as observed in nature, such as flocking, swarming, or schooling.

An early example is Reynold’s Boids [41]. ere are also ALife projects to sim-

ulate biological organisms. For example, OpenWorm simulates the roundworm

Caenorhabditis elegans at the cellular level [42].

Another common form of ALife consists of small computer programs which

can replicate, recombine, and mutate. ere does not appear to be a commonly-

used term for this type of ALife; in this thesis theywill be referred to as Instruction-

based ALife. Oen there is no fitness function for this type of agent; there is only

survival or death. Instruction-based ALife agents include Tierra [43, 44] Avida

[45], Framsticks [46], BREVE [47], and Darwinbots [48].

Some ALife implementations use some sort of AI to allow the agent to make

decisions. is can be a neural net, as in Noble Ape [49, 50], PolyWorld [51, 52,

53, 54], Creatures [55, 56] (no relation to Créatúr), or Crierding [57].

2.3 Evolution

e recipe for evolution is simple; it requires the following ingredients [58]:

1. variation: a continuing abundance of different elements,

2. heredity or replication: the capacity to create copies of elements, and

27

3. differential fitness: the number of copies created depends on how an ele-

ment’s features interact with its environment.

All of the complexity and variation of biological life arises from this recipe.

Although the process of evolution is normally associated with biological organ-

isms, it can occur with any substrate as long as those three conditions are met.

e work of Bernard et al. [59] suggests that evolution leads to a higher fitness

level for the agent than other forms of adaptation. Evolution is oen used in

ALife.

e field of , founded by D. T. Campbell, is based on the idea that cognition

should be studied from the perspective of evolutionary theory. [60] Campbell

applied the above recipe, which he called “blind variation and selective reten-

tion” to creative thought, describing how thoughts undergo a process of selec-

tion within a single organism. [61] e next section presents a framework for

analysing cognition within the framework of evolution.

2.4 Dennett’s Tower of Generate-and-Test

e behaviour of most biological animals is controlled by the organ called the

brain. By analogy, any mechanism which controls the behaviour of an AI or

ALife agent is typically called a “brain”. Denne [3] used the term in this looser

sense when he proposed a framework for ranking brain designs, which he called

the Tower of Generate-and-Test. As illustrated in Figure 2.2, each floor in the

tower represents an important increase in cognitive power. (In this section, the

description of the tower is taken from Denne [3, 4, p. 83-98, 5, p .258-262];

the assignment of various ALife species to levels in the tower is based on this

28

Darwinian creatures

Gregorian creatures

Popperian creatures

Skinnerian creatures. . .

What should I

do next?

What should I

think about next?

What can I do

with this tool?

Figure 2.2: Dennet’s Tower of Generate-and-Test

author’s interpretation of Denne’s framework.)

e ground floor contains what Denne calls Darwinian creatures. ese or-

ganisms have a fixed design; only the best designs survive. ey can only adapt

to the environment through recombination and mutation of genes. Instruction-

based ALife agents are Darwinian, as are simple ALife species used to model

group motion (such as Reynold’s Boids).

e next floor contains organisms where some aspect of their design is ad-

justed by events that occur during their lifetimes. Denne calls these Skinnerian

creatures aer the psychologist B.F. Skinner because they learn through operant

conditioning. Skinner saw operant conditioning as a sort of “next step” beyond

evolution, saying “Where inherited behaviour leaves off, the inherited modifia-

bility of the process of conditioning takes over.” [62]

In operant conditioning, actions that are rewarded are reinforced, and are

more likely to be repeated in future on similar occasions. is is a secondmecha-

nism (in addition to genetics) by which organisms can adapt to the environment.

ALife agents with some form of AI are usually Skinnerian creatures. (For exam-

29

ple, Noble Ape, PolyWorld, Creatures, and Crierding are all Skinnerian). How-

ever, this mechanism is a trial-and-error approach; a purely Skinnerian creature

is likely to try out a number of stupid moves before stumbling upon the smart

moves.

A still beer system would “weed out” stupid moves without needing to ex-

perience the consequences. Organisms on the next floor of the tower have a sort

of inner environment where they can “try out” an action and predict the results.

us, they have three mechanisms for adapting to the environment. Denne,

quoting the philosopher Sir Karl Popper, says that this mechanism “permits our

hypotheses to die in our stead” and calls the inhabitants of this floor Popperian

creatures. When a Popperian creature takes an action, it observes the differ-

ence (if any) between the predicted and actual results, and makes appropriate

adjustments to its models. us, Popperian creatures have a third mechanism

(in addition to genetics and operant conditioning) by which they can adapt to

the environment.

Denne points out that most biological species are Popperian creatures, in-

cluding the pigeons that were the focus of much of Skinner’s research. He con-

cludes that if there are any purely Skinnerian creatures, they would be simple

invertebrates. e difference in cognitive power between Skinnerian and Pop-

perian creatures is important.

[It is as i] Skinnerian creatures ask themselves, “What do I do next?”

and haven’t a clue how to answer until they have taken some hard

knocks. Popperian creatures make a big advance by asking them-

selves, “What should I think about next?” before they ask them-

30

selves, “What should I do next?” [4, p.98]

Organisms on the next floor exhibit some form of tool use. (e word “tool”

should be interpreted in the broadest sense; one of the most important tools

humans have are words.) us, they have four mechanisms for adapting to the

environment. Denne calls these organisms Gregorian creatures aer the psy-

chologist Richard Gregory, who observed that designed artefacts such as scis-

sors are a form of intelligence frozen from the past that can be applied now. [63,

p. 311-314]

How might we identify the level to which an organism belongs, if we do

not know the inner workings of its mind, or if indeed it has a mind? We could

first test whether or not it has any ability to learn; if not, we can assume it

is Darwinian (assuming of course that it evolves). If we observe the organism

using tools, we know that it is Gregorian. emore difficult task is to distinguish

between Popperian creatures and Skinnerian creatures. One possibility is to

train the organism to take a certain action in response to a stimulus. If the

organism gives the same response to a similar but not identical stimulus, we

might assume it is Popperian. However, we must ensure that the test stimulus

is not so similar to the training stimulus that mere operant conditioning would

cause the organism to give the correct response. In practice, it may not be easy

to determine the appropriate level of similarity between the training stimulus

and the test stimulus.

e Tower of Generate-and-Test has frequently been used to represent levels

of cognition in nature. [64, p. 1-9, 65, p. 153-157, 66, p. 9-12] Many researchers

have used it to evaluate ALife agents. [67, 68, p. 238] Some have proposed ex-

31

tending the tower with new levels beyond Gregorian. [69] Some have been

inspired by Denne’s tower to develop similar scales for other characteristics

such as volition. [70].

While the Tower of Generate-and-Test is useful for categorising both biolog-

ical and artificial agents, applying it to algorithms is problematic. An algorithm

for unsupervised learning might be considered Popperian, but unless it takes

some sort of action based on what it learns, this seems a poor fit. In fact, we

might imagine using the same learning algorithm as a component in a Skinner-

ian, Popperian, or even a Gregorian brain.

2.5 Reproduction

In biology, reproduction occurs in two forms. (Information in this section comes

from Beukeboom and Perrin [71].) In asexual reproduction, a single parent pro-

duces offspring, and the offspring inherit traits from that parent. A common

example of this is fission, where an organism such as a bacterium divides, pro-

ducing two offspring which replace the parent.

In the second form of reproduction, sexual reproduction, two parents pro-

duce offspring, and the offspring inherit a mixture of traits from both parents.

Typically, organisms which reproduce sexually are diploid: their cells (apart

from the sex cells) contain two sets of genetic information. Each parent con-

tributes a gamete (sex cell) which is haploid; these fuse during fertilisation to

form a diploid cell. In isogamous organisms, the gametes are of similar size and

form. Even so, fertilisation can only occur between two gametes of different

mating types. (Some species have hundreds of mating types.)

32

Anisogamous organisms, on the other hand, produce different types of ga-

metes. Smaller gametes are called sperm cells; the organisms which produce

these are defined to be male. Larger gametes are called egg cells; they are pro-

duced by female organisms. Males and females typically have differences in

size and shape beyond differences in their sex organs, this is called sexual di-

morphism.

Reproduction for ALife agents is usually modelled on either asexual repro-

duction, or (diploid) sexual reproduction. e laer approach may benefit ALife

by encouraging a diverse gene pool, preserving partial solutions thatmay be use-

ful as the environment changes [72, 73]. However, if the population is divided

into male and female agents, the number of mating opportunities is halved, and

ALife populations are usually small due to processor limitations. For this rea-

son, many ALife implementations use a form of asexual reproduction, but with

two parents (e.g., Tierra [43, 44], PolyWorld [51], and Creatures [55]). Some of

the offspring’s genes are taken from one parent; some from the other.

2.6 Gene expression

In biology, a gene is the fundamental unit of heredity. For organisms which re-

produce sexually, gene expression is the mechanism that determines the pheno-

type (the observable traits of the organism) from the genotype (genetic makeup)

[74]. Genes can have multiple alleles (forms). Most multi-cellular organisms are

diploid; they have two sets of chromosomes, one from each parent. Such an

organism will have two strands of genetic information. When corresponding

genes from the two sets are not identical, the resulting phenotype will depend

33

on the dominance relationship between the two alleles. One allele may be domi-

nant (expressed in the agent) and the other recessive (not expressed), or some sort

of blending may occur when the gene is expressed. Similarly, an ALife species

which uses sexual reproduction needs a way to determine the characteristics of

an agent from the two strands of genetic information.

2.7 Data mining

e explosion in online activity, the falling cost of storing data, and improve-

ments in technology for processing data have led to the phenomenon called big

data [75, p. 2]. Sciences such as astronomy and genomics were the first to expe-

rience this phenomenon, but it is nowwidespread [76, p. 6]. Mayer-Schönberger

and Cukier provide the following definition:

Big data refers to things that one can do at a large scale that cannot

be done at a smaller one, to extract new insights or new forms of

value, in ways that change markets, organisations, the relationship

between citizens and governments, and more. [76, p. 6]

e term “paern” refers to any structure, configuration, grouping of char-

acteristics, or set of relationships that can be found in multiple places in the

data.

Extracting those insights is the focus of data mining. Data mining is the

process of exploring data to discover interesting and useful paerns [77, p. 33,

78, p. 7]. In contrast with an ordinary database search or query, where the key

features and relationships are known; in data mining, they have to be discovered

[79, p. 5]. Gorunescu [79] offers the following overlapping definitions:

34

• e automatic search of paerns in huge databases, using com-

putational techniques from statistics, machine learning and pat-

tern recognition;

• e non-trivial extraction of implicit, previously unknown and

potentially useful information from data;

• e science of extracting useful information from large datasets

or databases;

• e automatic or semi-automatic exploration and analysis of

large quantities of data, in order to discover meaningful pat-

terns;

• e automatic discovery process of information. e identifi-

cation of paerns and relationships ‘hidden’ in data. [79, p. 5]

Gorunescu [79] also distinguishes between an ordinary database search or

query, where the relevant factors and relationships are known, and data mining,

where they are not; the first item on the list above should be interpreted with

that context in mind. e goal of data mining can be descriptive (e.g., to model

and understand the data) or predictive (using some of the variables to predict

other variables), or both [79, p. 5].

e terms datamining andKnowledgeDiscovery fromData (KDD) are some-

times used interchangeably, but it can be useful to draw a distinction. Suh

[80] considers data mining to be the knowledge generation step in the overall

KDD process, occurring aer pre-processing (cleaning, converting, and other-

wise preparing the data) and before post-processing (synthesising the knowl-

edge into information that can be used for decision-making) [80, p. 4]. Maimon

35

and Rokach [81] describe data mining as “the core of the KDD process, involv-

ing the inferring of algorithms that explore the data, develop the model, and

discover previously unknown paerns.” [81, p. 1]

Data mining includes a wide range of tasks, such as those listed below.

• Landscapemining explores the data to find the space of possible inferences

(the data’s “landscape”) and to identify interesting paerns before leaping

in with more traditional data analysis tools [82].

• Classification assigns objects to predefined categories based on the at-

tributes of the objects [83].

• Cluster analysis (also known as unsupervised classification or exploratory

data analysis) partitions items into a set of clusters such that objects within

a cluster have similar characteristics, and objects in different clusters have

dissimilar characteristics [83, 84].

• Anomaly detection, the discovery of unusual data values, can occur as a

side-effect of cluster analysis.

• Prediction (also known as forecasting) estimates future (or unknown) data

based on present data and past trends, validating hypotheses [83, 85, p. 4].

• Regression identifies functions which map data objects to prediction vari-

ables [83, 85, p. 4].

• Modelling produces a (typically simpler) representation of the data that

captures important features and relationships. Such models can be used

for classification, prediction, and to provide insight about the data.

36

• Visualisation makes insights understandable by humans [83].

As new techniques for analysing data are discovered, the nature of data min-

ing is changing. Menzies categorises the data mining community as moving

from algorithm mining (tuning parameters in data mining algorithms) to land-

scape mining (exploring the shape of the decision space) [82].

Algorithm mining is a “leap before your look” approach in which

researchers throw algorithms at data and then see what comes out.

A second approach is the “look before you leap” option—mining the

data to find the space of possible inferences before leaping in with

the learners. is is the data’s “landscape”. [82]

2.8 Agent-based approaes to data mining

ALife may be a useful tool for exploring these data landscapes; it has been used

in a variety of ways for data mining. Techniques modelled on insect behaviour

are common because “at some level of description it is possible to explain complex

collective behaviour by assuming that insects are relatively simple interacting

entities” (emphasis in the original) [86]. Ant Colony Optimisation (ACO) has

been used for supervised classification; is modelled on the behaviour of ants

finding a trail between their colony and a source of food [87, section 1.5, 88, 89].

Data clustering techniques have also been modelled on the sorting behaviour

of ants [89]. Insects are not the only biological model used. When a predator

encounters prey, it must decide whether to aack or continue searching for bet-

ter or easier prey. is technique has been used to reduce the dimensionality of

clustered data [90].

37

Cao argues persuasively that there is a synergy between autonomous so-

ware agents (ALife) and data mining. Both streams of research face challenges

such as distributed, parallel, and adaptive learning. Both require applications

which can understand and represent the interactions between components in

their domain [34, Ch. 1]. By providing a complex “environment”, big data may

encourage greater complexity and intelligence in agents.

Ecologists have long recognised that the complexity of an organ-

ism’s behaviour is related to the environment it must “solve”. [91]

2.9 e SOM algorithm

e Self-Organising Map (SOM) provides a way to represent high-dimensional

data in fewer dimensions (typically two), while preserving the topology of the

input data [92]. A SOM is a set of models associated with nodes in a regular

grid. (e term node can refer to either the physical location of a model, or the

grid co-ordinates of a model.) Paerns that are similar to each other in the high-

dimensional space are typically mapped to models that are near each other on

the grid. (ere are exceptions to this topology-preserving property, however;

see Villmann et al. [93]).

In addition to topology preservation, a SOM has benefits that make it useful

for ALife and intelligent agents. It is easy to understand and implement. e

SOMmodels can be inspected directly, which makes it easier to debug problems

with the implementation or the learning function. Aer a SOMhas been trained,

labels can be assigned to the nodes to allow it to be used for classification. It

can also be used to cluster data; a U-matrix (whose elements are the Euclidean

38

distance between neighbouring cells) will have high values at the cluster edges

[94].

e SOM has an established place in the data mining tool set, especially for

clustering and classification. It has also been used, sometimes with modifica-

tions, in ALife [95, 96] and artificial intelligence [97, 98].

SOM training (see Algorithm 1) is unsupervised. e elements (paerns) of

the input data are typically numeric vectors, but they can be any data type so

long as we can define a measurement of similarity between two paerns, and a

method to make one paern more similar to another, by an arbitrary amount.

e SOM models are arranged on a (typically two-dimensional) grid of fixed

size. e models must be initialised.

Algorithm 1 SOM algorithm [92].
For each input paern,

1. Compare the input paern to all models in the SOM. e node with the
model that is most similar to the input paern is called the winning node.

2. e winning node’s model is adjusted to make it slightly more similar to
the input paern. e amount of adjustment is determined by the learning
rate, which typically decays over time.

3. e models of all nodes within a given radius of the winning node are
also adjusted to make them slightly more similar to the input paern, by
an amount which is smaller the further the node is from the winning node.

Step 3 ensures that as additional input paerns are received, nodes that are

physically close respond to similar paerns in the input data. us, the result-

ing grid preserves the topology of the original high-dimensional data. SOMs

therefore “translate data similarities into spatial relationships” (emphasis in the

original) [99].

39

e traditional SOM has been adapted and extended in many ways. Com-

mon modifications include using grids in non-euclidean spaces [99], dynami-

cally increasing the size of the grid [100], replacing the grid with a hierarchical

arrangement of nodes [101], and combining with principal component analysis

[102]. ere is extensive literature on SOMs with two or more of these modifi-

cations [103, 104, 105, 106, 107, 108, 109, 110].

2.10 Wains

Wains are an ALife species with artificial intelligence. ey live in, and subsist

on, data; for them, finding paerns in data is a survival problem. In order to stay

alive, they must discover paerns in the data, build models of those paerns,

classify new data based on the models, decide how to respond to data, and adapt

to changes in the paernicity of the data. (Except where noted, the information

in this section is taken from de Buitléir, Russell, and Daly [2] and de Buitléir [1].)

Wains are diploid, but have only one sex. is may confer some of the

advantages of sexual reproduction, without reducing the number of mating op-

portunities. Genes affect the appearance, configuration or capability of a wain.

Each wain gene has multiple alleles (forms). If two corresponding alleles are

not identical, the characteristics of the child will depend on the relationship be-

tween the alleles. One allele may be dominant and the other recessive, or the

resulting wain may have a blending of the traits encoded for by the alleles

e version of wains and Créatúr documented in de Buitléir, Russell, and

Daly [2] and de Buitléir [1] will hereinaer be referred to as the original imple-

mentation. e version that incorporates the changes described in later chapters

40

of this thesis will be referred to as the new implementation. e original imple-

mentation will be briefly described here; detailed discussion will be deferred to

Chapters 5 and 7, when it is contrasted with the new implementation.

In the original implementation, a wain’s brain contained a classifier and a

decider. e classifier was a modified SOM; it identified paerns in sensory

inputs that a wain received during its lifetime. e SOM was modified by omit-

ting Step 3 in Algorithm 1. is sped up the algorithm, but the topology of the

input data was no longer preserved. e decider was a decision matrix with

adjustable weights. A wain’s response to a situation was chosen by weighted

random selection; the weights were taken from the row of the decision matrix

corresponding to the paern identified by the classifier. Based on the outcome

(positive or negative), the weights would be adjusted. is is a form of operant

conditioning, making the original wains Skinnerian creatures.

e brain also implemented a feature inspired by the theory of Neural Dar-

winism, which proposed dynamic selection between neuronal groups [111]. SOM

models (which might be considered analogous to neuronal groups) competed

with each other. Periodically, the least useful model was erased (by seing it to

random noise) so that it could learn a new paern. (e total number of models

remained constant.) However, experiments showed that this feature was not

useful; evolution lengthened the erasure cycle to the point where a wain was

unlikely to experience any erasure during its lifetime.

e original wains were tested with handwrien numerals taken from the

MNIST database [112], (which will be described further in Section 2.13.1). is

was not strictly a classification task, however. When encountering an object (a

numeral or another wain), the agent could choose to try to eat it, play with it,

41

flirt with it, or ignore it. A numeral was either “fun” (would reduce boredom

when played with), or “boring” (no effect on boredom). Also, numerals were

either “nutritious” (would provide energy when eaten), or “poisonous” (would

deduct energy when eaten).

When encountering a numeral, the decision matrix was used to estimate

the desirability of each possible action, and a response was chosen by weighted

random selection. Only the model that best fit the input paern was used for

decision-making. It was possible for the least desirable action to be chosen, so

thewainwould occasionally take risks. Sincewainswere asked to choose from

a small set of actions rather than to classify the numerals, it is difficult to say

how accurate their mental models of numerals were. For example, not eating

an “edible” numeral, which wains did approximately 30% of the time, is not

necessarily a mistake; the wain might already have maximal energy or benefit

more from playing with it. However, eating a “poisonous” numeral is clearly a

mistake, one which thewainsmade nearly 10% of the time. Aempting to mate

with a numeral rather than another wain is another clear mistake, wains did

this approximately 4% of the time. Clearly there is scope for improving wains’

decision-making ability.

e appearance of a wain in the original implementation was a 28x28 grey-

scale image, which was genetically determined. (A genetically determined value

is one that is specified by an agent’s genes, can be different for each agent, can

be inherited by its children, and is subject to evolutionary pressures.) Wains in

the starter population had the image of an X as their appearance; subsequently,

several mutations arose producing wains with different appearances. When a

wain encountered an object, the appearance of that object was presented to the

42

wain’s senses, along with information about the wain’s current state. It could

then choose to eat, aempt to mate with, or play with the object. When a child

was born, it remained until maturity with the parent who initiated the mating.

Experiments demonstrated that a population of wains can indeed discover

paerns, make survival decisions based on those paerns, and adapt to changes

in the paernicity of their data environment. Not only did individual agents

learn to make beer decisions during their lifetime, but evolution made changes

to the brain that improved the decision-making ability of the agents. Evolution

made their brains more efficient, by reducing the number of paerns that the

SOM stored, without affecting an agent’s ability to identify sufficient food to sur-

vive. A series of changes was made to the environment; they adapted quickly to

these challenges, primarily by modifying their learning rates through evolution.

Wains have also been applied to the task of speech recognition, by having them

identify audio samples of spoken numerals [113, 114].

Wains were developed and tested using a framework called Créatúr, a

reusable soware framework for automatingALife experiments [1, Ch. 5]. Créatúr

provided a daemon, an event scheduler, and a log facility. It allocated process-

ing resources to agents, provided persistence of statistics and data between runs,

deducted energy from agents to simulate metabolic requirements, and removed

dead agents from the population and archived them.

In developing the wains, De Buitléir [1, p. 66] used the strategy outlined

below.

• Combine AI and ALife.

• Use data as the environment.

43

• Frame data analysis as a survival problem.

• Use multiple kinds of evolution.

• No fitness function except survival.

• No free lunch (everything the agent does, even just living, must have a

cost).

• Protect the young while they learn.

• Use diploid reproduction.

• Provide a means for agents to estimate degrees of kinship.

Several directions for future research were identified, including improving

the wain’s decision-making process, and implementing cultural transmission

(allowing children to learn by observing the actions of their parents, and adults

to learn by observing their peers).

2.11 Automatic spee recognition

e value of a new data mining technique can be demonstrated by applying it

to a common data classification task, and comparing its performance with tradi-

tional techniques. One such “benchmark” task is Automated Speech Recognition

(ASR), which is the process of converting an acoustic signal (spoken language)

into the corresponding sequence of words. e primary goal of ASR is to al-

low humans to interact more naturally with computers. Part of the research

described in this thesis involves applying wains to an ASR task.

44

e temporal nature of speech creates special challenges for ASR [115]. One

challenge is varying dimensionality. In most types of machine learning, all

data inputs are the same size. However, speech is elastic; even when the same

speaker uers the same word twice, the resulting acoustic data will have dif-

fering lengths. Another challenge is identifying word boundaries in continuous

speech. For this reason, accuracy is lower when recognising continuous speech

as opposed to isolated words [116, p. 7]. For more information about the chal-

lenges of ASR, and a survey of the methods used, see O’Shaughnessy [117].

ASR systems rarely operate on the raw waveform data. It is preferable to

find some features of the audio signal that are characteristic of a particular ut-

terance, producing representations that are more suitable for ASR. For example,

two samples of the word “three” should have similar representations. even for

different speakers. Conversely, a sample of the word “three” should have a dif-

ferent representation from one of the word “six”, even for the same speaker.

Producing such a representation is called feature extraction.

Although an audio signal is constantly changing, dividing the signal into

short frames allows us to treat the signal as if it were constant during each frame.

ere are a variety of methods for extracting features from a frame; one common

technique is to represent the signal using mel-frequency cepstral coefficients

(MFCCs). is involves taking the Fourier transform, converting to amel scale (a

scale based on human perception of pitch distance), taking the log of the energy

for each mel frequency, and applying a discrete cosine transform (DCT). e

amplitudes of the resulting spectrum are the MFCCs, that is, the feature vector

for that frame. Davis and Mermelstein [118] describe this technique in more

detail.

45

One widely used ASR technique is the Hidden Markov Model (HMM) [119].

A Markov process is a stochastic (random) process where the next state of the

system is conditional on the current state, and independent of the past history

of the system. A Markov model is a model of such a process. If the state is only

partially observable, it is called a hidden Markov model. In ASR, the observable

part of the state is the audio signal, and the hidden part is the text. e hidden

Markov model toolkit (HTK) provides the ability to construct and manipulate

HMMs [120]. HTK is widely used for speech recognition research.

2.12 Functional programming concepts

Functional programming is a paradigm that treats expressions as mathematical

functions, and avoids side effects of computation. Wains and Créatúr were de-

veloped in Haskell [121] which is a purely functional programming language.

Named aer the logician Haskell Curry, the language uses strong static typing,

with type inference (automatic deduction of the data type of an expression),

and lazy evaluation (delaying the evaluation of an expression until its value

is needed) [122]. Appendix A provides a brief introduction to Haskell syntax,

which may be useful to consult when reading Chapter 4.

Functional programming languages like Haskell support powerful concepts

and techniques that are likely to be unfamiliar to programmers accustomed to

procedural languages such as Java or C. Some of these concepts and techniques

are discussed below.

46

2.12.1 Domain-specific languages

A Domain-Specific Language (DSL) is a special-purpose language tailored to

meet the needs of a limited domain. As “lile languages” [123], they do not

include all of the features provided in a general-purpose language like Haskell.

Instead, they “trade generality for expressiveness in a limited domain” [124].

Fowler identifies two main reasons for using DSLs. First, they can improve

the programmer’s productivity because programs in the target domain are “eas-

ier to understand and therefore quicker to write, quicker to modify, and less

likely to breed bugs”. e second reason is that because DSLs are smaller and

targeted to the problem domain, they make it easier for non-programmers to

understand the code [125].

Designing and implementing a language from scratch is difficult, but the

process can be simplified by inheriting the infrastructure of the “container” lan-

guage (Haskell), tailoring it to meet the needs of the domain [126, 127, 128]. A

language implemented in this way is called a Domain-Specific Embedded Lan-

guage (DSEL). e new version of Créatúr developed as part of this research

project uses DSELs.

2.12.2 Monads

Monads (the term comes from category theory) “provide a convenient frame-

work for simulating effects found in other languages, such as global state, excep-

tion handling, output, or non-determinism.” [129]. e new version of Créatúr

developed as part of this research project uses monads in all of these roles.

Somemonads can be loosely described as containers for values. For example,

47

the Haskell list monad ([]) contains a sequence of zero or more values (which

might be called a vector or array in some programming languages). e Maybe

monad either contains Just a value, or it contains Nothing. e Eithermonad

contains one of two possible value types, constructed using Left or Right.

(Typically Left right represents some sort of error, while Right represents a

normal value.) Some monads (e.g. IO) are beer thought of as contexts for

computation, rather than as containers.

However, since a monad defines a small set of operations that can be used

within it, it is essentially a DSEL. Hudak calls monads used in this way “mod-

ular monadic interpreters” because they allow different language features to

be isolated, given context-specific interpretations, and combined like “building

blocks” [126].

2.12.3 Datatype-generic programming

Generic programming is programming that references types to be specified later.

e actual implementation is automatically generated when the types are finally

specified. e Haskell 98 standard [121] included some support for generic pro-

gramming, in the form of derived instances, but only for six typeclasses. e

Glasgow Haskell Compiler (GHC) provided support for five more typeclasses as

part of the Scrap Your Boilerplate system [130, 131, 132].

GHC version 7.2 added support for datatype-generic programming as pro-

posed by Magalhães et al. [133]. e new version of Créatúr developed as part

of this research project uses this feature to minimise the amount of code that

users of the framework must write. is lightweight and portable approach al-

48

lows the programmer to specify how to derive arbitrary class instances. e

key is that the “generic” type is represented at run-time using a sum-of-products

representation, which involves the following types:

• U1 Unit, used for constructors without arguments

• K1 Constants, additional parameters and recursion

• M1 Meta-information (constructor names, etc.)

• :+: Sum, which encodes choices between constructors

• :*: Product, which encodes multiple arguments to constructors

As a result of this approach, the programmer usually only needs to write

implementations for a set of base types, plus an implementation for each of the

representation types above. Finally, the end user simply declares their type to

be an instance of the desired type (using the DeriveGeneric pragma).

2.13 Data sets

is section describes the data sets used as part of the research described in this

thesis.

2.13.1 MNIST

e MNIST database is a collection of images of hand-wrien numerals from

Census Bureau employees and high-school students [112]. e training set con-

tains 60,000 images, while the test set contains 10,000 images. All images are

49

Figure 2.3: Sample images from the MNIST database [112].

28x28 pixels, and are grey-scale as a result of anti-aliasing. e centre of pixel

mass of the numeral has been placed in the centre of the image. Sample images

are shown in Figure 2.3.

2.13.2 TI46

e TI46 speech database is a corpus of 46 isolated spoken words recorded for

both male and female speakers. e corpus is intended for the evaluation of

ASR products [134]. Among the words in the corpus were the numerals “zero”

through “nine”. e training set contains 1,594 samples of spoken numerals; the

test set contains 2,541 samples.

2.13.3 ISP traffic

Cortez et al. [135] provided Internet traffic data (in bits) from a private Internet

Service Provider (ISP) with centres in 11 European cities. One of the datasets

(referred to asA5M in Cortez et al. [136]), is a univariate time series; transatlantic

link traffic was measured at five-minute intervals, from 6:57 a.m. on 7 June to

11:17 a.m. on 31 July 2005, for a total of 14,772 data points. ere were no

missing values.

50

2.13.4 New York City weather data

e Zonination weather database contains weather data for 24 international

cities [137]. e New York City data contains daily weather records from 1 July

1948 through 31 December 2015. As shown in Table 2.1, the records for 95 days

are missing. e total number of records is 24,560.

Table 2.1: Missing records in New York City weather data

start stop days
2000-02-23 2000-05-02 70
2000-06-01 2000-06-08 8
2000-08-12 2000-08-21 10
2000-08-23 2000-08-26 4
2000-08-28 2000-08-30 3

total missing days 95

e data is a multivariate time series; each record contains the information

listed below. Some records have missing values.

• Date

• Maximum, mean, and minimum temperature (℉)

• Maximum, mean, and minimum dew point (℉)

• Maximum, mean, and minimum humidity

• Maximum, mean, and minimum sea level pressure (inches)

• Maximum, mean, and minimum visibility (miles)

• Maximum and mean wind speed (miles/hour)

51

• Maximum gust speed (miles/hour)

• Precipitation (inches)

• Cloud cover (an integer in the interval [0, 8])

• Events (“”, “Fog”, “Fog-Rain”, “Fog-Rain-Hail-understorm”, “Fog-Rain-

Snow”, “Fog-Rain-Snow-understorm”, “Fog-Rain-understorm”, “Fog-

Snow”, “Fog-Snow-understorm”, “Fog-understorm”, “Rain”, “Rain-Snow”,

“Rain-Snow-understorm”, “Rain-understorm”, “Snow”, “understorm”

or “Tornado”)

• Wind direction (degrees)

• City (always “New York City (USA)”)

• Season (“Spring”, “Summer”, “Autumn” or “Winter”)

2.14 Summary

e ideas and techniques discussed in this literature review are summarised be-

low, with references to the section in which the topic was discussed.

Artificial Intelligence (AI) (Section 2.1) refers to programs which exhibit in-

telligent behaviour. Intelligence is difficult to define, but key aspects include

learning, adapting to the environment, acting purposefully to achieve a goal,

and providing logical responses given one’s knowledge. Although AI has had

a rocky history, it has made practical contributions to fields such as robotics,

expert systems and machine vision [30].

52

Artificial Life (ALife) (Section 2.2) aempts to create life-like behaviour using

soware, hardware, biochemistry or other media. Some ALife implementations

use some sort of AI to allow the agent to make decisions.

Denne’s Tower of Generate-and-Test (Section 2.4) is a framework for rank-

ing brain designs, which can be applied to artificial as well as biological life.

Each floor in the tower represents an important increase in cognitive power.

Darwinian creatures have a fixed design; they can only adapt to the environ-

ment through recombination and mutation of genes. Skinnerian creatures learn

through operant conditioning; actions that are rewarded are reinforced and are

more likely to be repeated in similar situations. Popperian creatures have the

ability to predict the results of some actions, allowing them to weed out stupid

moves without needing to experience the consequences. Gregorian creatures

exhibit some form of tool use. [3, 4, p. 83-98, 5, p .258-262]

Although evolution (Section 2.3) is normally associated with biological or-

ganisms, it can apply in other contexts, including ALife, provided that the condi-

tions aremet: theremust be a continuing abundance of different agents, the abil-

ity to create new agents by copying genetic information from existing agents,

and competition so that the number of agents in the population with a specific

trait depends on how the trait interacts with the environment [58]. Evolution

may lead to a higher fitness level for agents than other forms of adaptation [59].

In biological organisms, gene expression (Section 2.6) describes how the ge-

netic information of an organism gives rise to its physical traits. Most multi-

cellular organisms have two sets of chromosomes, one from each parent. When

corresponding genes from the two sets are not identical, one allele (form) may

be dominant (expressed in the agent) and the other recessive (not expressed),

53

or some sort of blending may occur. Sexual reproduction may benefit ALife

by encouraging a diverse gene pool, preserving partial solutions that may be

useful as the environment changes [72, 73]. However, it halves the number of

mating opportunities, and ALife populations are usually small due to processor

limitations.

Data mining (Section 2.7) refers to extracting insight from data by discover-

ing interesting and useful paerns. It encompasses a variety of tasks, including

classification (assigning objects to predefined categories) [83] and prediction (es-

timating future (or unknown) data based on present data and past trends [83, 85,

p. 4]. Soware ALife is sometimes used for data mining.

e Self-Organising Map (SOM) (Section 2.9) provides a way to represent

high-dimensional data in fewer dimensions, while preserving the topology of

the input data [92]. e SOM has an established place in the data mining tool

set, especially for clustering and classification. It has also been used, sometimes

with modifications, in ALife [95, 96] and artificial intelligence [97, 98].

Wains (Section 2.10) are an ALife species with artificial intelligence. ey

live in, and subsist on, data; for them, finding paerns in data is a survival prob-

lem. Wains have two sets of chromosomes, but have only one sex. is may

confer some of the advantages of sexual reproduction, without reducing the

number of mating opportunities. Genes affect the appearance, configuration

or capability of a wain. Wains were developed and tested using a framework

called Créatúr, a reusable soware framework for automating ALife experi-

ments. Several directions for future research were identified, including improv-

ing the wain’s decision-making process, and implementing cultural transmis-

sion.

54

Automated Speech Recognition (ASR) (Section 2.11) is the process of con-

verting an acoustic signal (spoken language) into the corresponding sequence of

words. e hidden Markov model toolkit (HTK) [120] is widely used for ASR re-

search, and is a useful “benchmark” task for evaluating data mining techniques.

Haskell [121] (Section 2.12) is a purely functional programming language.

Functional programming is a paradigm that treats expressions as mathematical

functions, and avoids side effects of computation. Wains and Créatúr were

developed in Haskell.

A Domain-Specific Language (DSL) (Section 2.12.1) is a special-purpose lan-

guage tailored to meet the needs of a limited domain. DSLs can help the pro-

grammer to write and debug code more quickly, and make it easier for non-

programmers to understand the code [125]. If the DSL is implemented with-

ing a “container” language, it is called a Domain-Specific Embedded Language

(DSEL). e new version of Créatúr developed as part of this research project

uses DSELs.

Monads (Section 2.12.2) “provide a convenient framework for simulating ef-

fects found in other languages, such as global state, exception handling, output,

or non-determinism.” [129]. e new version of Créatúr developed as part of

this research project uses monads in all of these roles.

Generic programming (Section 2.12.3) references types to be specified later;

the actual implementation is automatically generated when the types are finally

specified. e Glasgow Haskell Compiler (GHC) provides support for datatype-

generic programming as proposed by Magalhães et al. [133]. e new version of

Créatúr developed as part of this research project uses this feature to minimise

the amount of code that users of the framework must write.

55

e research described in this thesis uses the following data sets: a) e

MNIST database (Section 2.13.1), a collection of images of hand-wrien numer-

als. b) e TI46 speech database (Section 2.13.2), a corpus of isolated spoken

words recorded for both male and female speakers. c) e Cortez et al. [135]

Internet traffic data (Section 2.13.3) from a private ISP with centres in 11 Euro-

pean cities. d)e Zonination weather database (Section 2.13.4), which contains

weather data for 24 international cities [137].

56

Chapter 3

Approa

Recall the research questions presented in Chapter 1:

Researestion 1: Will givingwains a mechanism to predict the

outcomes of possible actions, and to choose the action with the best

predicted outcome, make them beer decision-makers?

Resear estion 2: Can Popperian wains learn to classify data

with accuracy and speed comparable to traditional classificationmeth-

ods?

Resear estion 3: Can Popperian wains learn to forecast fu-

ture values in a data stream, with accuracy and speed comparable

to traditional forecasting methods?

is chapter describes the approach used to answer these questions.

De Buitléir, Russell, andDaly [2] recommended improving thewain’s decision-

making process, and implementing cultural transmission of information, both

57

from parent to offspring, and between adults. As discussed in Section 2.10,

wains in the original implementation used a decision matrix with adjustable

weights to determine their response to each stimulus. Actions that were re-

warded are more likely to be repeated. is is operant conditioning; the original

wains were Skinnerian creatures. If wains were given a way to mentally test

an action and predict the results, they would become Popperian creatures, with

the improvement in cognitive power that entails. is would require a complete

redesign of the decision-making process.

Based on the literature review undertaken (see Chapter 2), no ALife species

with Popperian-level AI has been used for data mining, so it is not obvious how

wains should be used for this purpose. Recall from Section 2.7 that data mining

includes the following tasks:

• landscape mining

• classification

• cluster analysis

• prediction

• regression

• modelling

• visualisation

Wains do not have the ability to perform regression. Neither can they be

used for visualisation, except to the extent that their mental models can be ex-

amined. Landscape mining is a rather broad term; at present it is not clear how

58

wains might contribute in this area. In the original implementation of wains,

the modified SOM allowed them to build a set of models representing the envi-

ronment, as an aid to decision-making. us, at the individual level they per-

formed cluster analysis and modelling. However, the desired output of data

mining is a single, unified view of the data, not hundreds of conflicting views.

It should be possible to have a population of wains co-operate to build a sin-

gle, unified set of models, but designing a suitable reward system could prove

challenging.

e original wains also performed classification, but to internal categories

(unique to each individual wain) rather than to human categories. However,

this seems to be a promising area. With beer decision-making, the ability to

be taught rather than merely learning through trial and error, and a suitable

reward system,wainsmight be able to perform true classification. And if wains

could become Popperian creatures with the ability to predict the outcome of

their actions, they might also be used to predict data trends. ese two areas,

classification and prediction, seem to be the logical choice for using wains as

data mining tools, and were the focus of this research project. To discover if

wains could be truly useful for data mining, the decision was made to test them

with complex data, and with data in a variety of domains, and to compare the

results with traditional data mining techniques.

It is important to note that wains were not designed to do data mining, ei-

ther in the original implementation or the new implementation. Instead, they

were designed to be Popperian creatures, and to live in an environment of data.

In order to get wains to do data mining, we frame it as a survival problem as

recommended by de Buitléir [1, p. 60].

59

Chapter 4

Improving the Créatúr framework

In preparation for the experiments described in later chapters, several improve-

ments were made to the Créatúr framework. ese improvements were not

strictly required to answer the research questions, but they made the framework

much easier to use, both by the author and future researchers. is chapter de-

scribes the improvements to the framework. Some Haskell code snippets (e.g.,

examples of how to use the framework) are presented. However, the examples

will be explained in context, so it is not necessary to know Haskell to read this

chapter. (If more information is needed, Appendix A provides a brief introduc-

tion to Haskell syntax.)

e framework code had originally been combinedwith the code implement-

ing the wains; it is now re-factored into a separate, reusable package called

creatur. (Wains are now implemented in separate packages, to be discussed in

Chapter 5.) e re-factored framework can support a variety of types of agents.

To illustrate this, three sample agents were developed: a Rock which does not

reproduce, a Plant which reproduces asexually, and a Bug which reproduces

60

sexually. A tutorial1 is available that illustrates the use of Créatúr with these

sample agents, both individually and in combination.

e new implementation of Créatúr adds features that make it easier to run

experiments. It maintains a cache inmemory of agents in the current population

to minimise the number of times an agent is read from storage, reducing I/O

time. Also, Créatúr now allows the user to define constraints on statistics that

must hold aer a certain number of rounds; if these constraints are not satisfied,

the experiment will halt.

At the start of an experiment, the agents are not likely to be very good at the

assigned tasks. ey need help staying alive, or else they will die before they

have time to learn. However, the environment should become harsher over time

to ensure sufficient selection pressure to drive continued improvement. In the

original implementation, the user had to set up a generous initial reward system,

monitor the progress of the agents, and manually adjust the reward system to

make rewards smaller or more difficult to get as the agents began learning. e

monitoring and adjustment could be tedious.

e new implementation of Créatúr provides a mechanism which elimi-

nates the need to adjust the reward system. It ensures that agents have a con-

tinuing incentive to learn, and helps to keep the variation in population size to

approximately±50%. is “balancing” feature gives energy to agents, or deducts

energy from them, as needed to satisfy two constraints. e primary constraint

is that the average energy of agents should not exceed a user-defined thresh-

old. An agent’s energy is typically restricted to the range (0, 1). If the average

energy level is high, it is likely that many agents have maximal energy. ose
1hps://github.com/mhwombat/creatur-examples/raw/master/Tutorial.pdf

61

agents will not gain any benefit from further energy rewards, and thus have

lile incentive to learn. Keeping the average energy below a certain threshold

helps to ensure that most wains are motivated to continue learning.

If the primary constraint has beenmet, a secondary constraint is applied: the

total energy of all agents at the beginning of each round should equal the total

energy at the beginning of the experiment. is conservation of total system

energy helps to ensure that agents compete for energy rewards. Effectively, this

makes the environment gentle at the beginning of the experiment, gradually

becoming harsher as the agents master the task, forcing them to compete for

resources.

e most significant improvement to Créatúr is the support for automatic

genetic encoding and decoding. In the original Créatúr and wain implementa-

tion, all genetic informationwas encoded using a custom scheme. Adding a gene

to an agent’s genome required that the programmer write code to encode and

decode the new gene, and to apply any dominance relationship between alle-

les. e new creatur provides this functionality automatically for any Haskell

type, so the programmer does not need to write encode and decode functions.

is makes it easier to add new genes. e rest of this chapter will describe this

feature.

4.1 Artificial Life genetics and recombination

Consider the agent below. Associated with the agent is a name, a flower colour,

a current energy level, and some genetic information.

data Plant = Plant

62

{

plantName :: String,

plantFlowerColour :: FlowerColour,

plantEnergy :: Int,

plantGenome :: [Bool]

}

data FlowerColour = Red | Orange | Yellow | Violet | Blue

is is of course a very simple example. ere is only one genetic trait,

plantFlowerColour; it is specified by the plantGenome, which is encoded as

a sequence of Bools. (e field plantEnergy is not genetic; it is set to the same

initial value for all Plants at “birth”.)

Our Plant type has only one strand of genetic material; this illustrates a

common approach [138, p. 10] in evolutionary computation that will be referred

to as simplified sexual reproduction hereaer. During reproduction, the strands

from two parents are recombined to produce two new strands. Two offspring

can be created from the new strands. Alternatively, one strand may be chosen

at random to create a child, and the other strand discarded. In either case, each

parent contributes approximately half of its genetic information to the offspring.

Compare the definition of Plant with the following definition. is agent,

called Bug, uses an approach that more closely models sexual reproduction in

biology.

data Bug = Bug

{

63

bugName :: String,

bugColour :: BugColour,

bugSpots :: [BugColour],

bugSex :: Sex,

bugEnergy :: Int,

bugGenome :: ([Word8],[Word8])

}

data BugColour = Green | Purple | Red | Brown | Orange | Pink | Blue

data Sex = Male | Female

is agent has three genetic traits: a base colour, bugColour, one or more

coloured spots, bugSpots, and sex bugSex. More importantly, there are two

strands of genetic information, represented by a tuple containing two sequences

of Word8s. During reproduction, the two strands from one parent are recom-

bined to produce two new strands. One of those strands is chosen at random to

become that parent’s contribution to the child’s genome. is is analogous to

the production of a gamete in biology. e process is repeated for the other par-

ent. us the child has two strands of genetic information, one contributed by

each parent. As before, each parent contributes approximately half of its genetic

information to the offspring.

Although there are differences in the details, the task of implementing either

style of reproduction is very similar. e programmer must design a genome,

implement recombination of genetic information, support occasional mutation

64

of genes, provide a means to encode a set of traits into a strand of genetic infor-

mation, provide a means to decode strands of genetic information to determine

the corresponding traits, and implement the construction of an agent from the

genome.

e researcher may not care about the precise design of the genome, or its

implementation, only requiring that it behaves in a way that supports evolution.

Specifically, the genome and the recombination technique must be designed to

ensure that offspring are similar to their parents (except in the case of muta-

tion). A straightforward conversion of numeric values to binary is not a good

approach; an agent with, say, 18 legs (10010) and one with 20 legs (10100) could

produce a child with 31 legs (11111) – not very similar to either parent!

So designing, implementing, and testing a genome is not trivial. Are there

tools that can make this easier? e rest of this chapter describes how Créatúr

uses Haskell features such as monads, DSELs, and datatype-generic program-

ming to address genetics and reproduction.

4.2 Gene encoding

e Créatúr library provides tools to develop an encoding scheme for a gene or

an entire organism. e Genetic class provides the functions for encoding and

decoding. (A Haskell class defines an interface for which there can be multiple

implementations. In that sense, it is similar to a Java interface). ere are mul-

tiple modules that implement this interface. By simply changing the import

statement, the user can change the base type used for the encoded genes. is

makes it easy for the user to benchmark different types to determine, for exam-

65

ple, whether [Word8] (i.e., a vector whose elements are 8-bit bytes) or [Word16]

will be more efficient in a given application.

e implementation of Genetic is shown below 2. e function putwrites a

gene to a sequence; get reads the next gene in a sequence. Créatúr also provides

Reader and Writermonads for operating on an encoded gene sequence. ese

will be discussed in more detail in Section 4.6.

class Genetic g where

put :: g -> Writer ()

get :: Reader (Either [String] g)

Datatype-generic programming allows Créatúr to automatically generate

instances for put and get. e details of how to use datatype-generic program-

ming are described byMagalhães et al. [133] and on the Haskell wiki [140]. Here

is a summary of the steps taken to allow implementations of the Genetic class

to be automatically generated.

• Implement Genetic for a set of base types Bool, Char, Word8 and Word16,

along with types of the form [a], Maybe a, (a, b) and Either a b,

where a and b are themselves instances of Genetic.

• Create a new class, GGenetic, which handles encoding and decode the

sum-of-products representation of a value.

• Implement GGenetic for each of the types used in the sum-of-products

representation.
2Readers familiar with Haskell may wish to consult de Buitléir et al. [139] for a discussion of

why the Créatúr library uses multiple modules implementing the same interface, rather than,
for example, multi-parameter typeclasses.

66

• Provide a default implementation of put and get in the Genetic class that

simply invokes the corresponding methods in the GGenetic class.

As a result, the end user can automatically create an instance of Genetic

for any type without writing an implementation for put or get, as long as

the type is constructed using only the supported base types. For example, we

can modify the FlowerColour type to use the automatically-generated genetic

encoding scheme by using the language pragma DeriveGeneric, importing

GHC.Generics, and declaring FlowerColour to be an instance of Genetic.

Now get and put can be used with the FlowerColour type.

{-# LANGUAGE DeriveGeneric #-}

...

import ALife.Creatur.Genetics.BRGCBool

import GHC.Generics

...

data FlowerColour = Red | Orange | Yellow | Violet | Blue

deriving Generic

instance Genetic FlowerColour

ere are five variants of Genetic. e one in ALife.Creatur.Genetics.

Code.BRGCBool encodes genes to produce a sequence of Bools. is is prac-

tical when the genes of an agent have a small set of possible values. If an

agent has genes with a larger number of possible values, it may be more ef-

ficient (i.e., require fewer bits) to store their genetic information as a string

of numbers. ALife.Creatur.Genetics.Code.BRGCWord8 encodes genes to

67

produce a string of 8-bit bytes. Similarly, ALife.Creatur.Genetics.Code.

BRGCWord16 uses 16-bit words, ALife.Creatur.Genetics.Code.BRGCWord32

uses 32-bit words, and ALife.Creatur.Genetics.Code.BRGCWord64 uses 64-

bit words.

Straightforward binary encoding of numeric genes is problematic. Perform-

ing crossover (discussed in 4.4) on the binary values 1000 and 0111 could easily

yield 1111 or 0000. So parents with 8 legs and 7 legs could have offspring with 15

legs or 0 legs, very different from their parents. To avoid this problem, all three

implementations encode integral and character values using a Binary-Reflected

Gray Code (BRGC). A Gray code maps values to codes in a way that guarantees

that the codes for two consecutive values will differ by only one bit [141]. is

feature is useful for encoding genes because the result of a crossover operation

will be similar to the inputs. is helps to ensure that offspring are similar to

their parents, as any radical changes from one generation to the next are the

result of mutation alone.

4.3 Reproduction

Recall that in our Plant example, each agent has a single strand of genetic infor-

mation. During reproduction, the strands from two parents are recombined, cre-

ating genetic information for potential offspring. us, each parent contributes

approximately half of its genetic information to the offspring. e recombina-

tion process will be discussed in Section 4.4.

Créatúr provides the Reproductive class (shown below) in the ALife.

Creatur.Genetics.Reproduction.SimplifiedSexual module for this pur-

68

pose. is class can be used with either BRGCBool, BRGCWord8, BRGCWord16,

BRGCWord32 or BRGCWord64, and contains three functions. e function recombine

recombines the genetic information from two potential parent agents, as dis-

cussed above. e user must provide the implementation for recombine using

a DSEL which will be described in Section 4.4. e function build constructs

an agent from a strand of genetic information, if it is possible to do so (i.e. if the

genes translate to a valid agent). e user must provide an implementation of

this function as well; this is discussed in Section 4.6. Finally, the makeOffspring

function takes two agents and aempts to produce offspring. A default imple-

mentation is provided, which calls recombine to create a genome for the child

and calls build to construct the child.

class Reproductive a where

type Strand a

recombine :: RandomGen r => a -> a -> Rand r (Strand a)

build :: AgentId -> Strand a -> Either [String] a

makeOffspring :: RandomGen r

=> a -> a -> AgentId -> Rand r (Either [String] a)

In our Bug example, each agent has two strands of genetic information. Dur-

ing reproduction, the two strands from one parent are recombined to produce

two new strands. (e recombination process will be discussed in Section 4.4.)

One of these strands is chosen at random to become that parent’s contribution

to the child’s genome. is is analogous to the production of a gamete (ovum

or sperm) in biology. e process is repeated for the other parent. us the

child has two strands of genetic information, one contributed by each parent.

69

As before, each parent contributes approximately half of its genetic information

to the offspring.

Créatúr provides a class for this, also called Reproductive, in the ALife.

Creatur.Genetics.Reproduction.Sexual module. As before, this class can

be used with either of the encoding methods described in Section 4.2, and con-

tains three functions. e produceGamete function recombines the twin strands

of genetic information from two potential parents, using the technique described

above. e user must provide the implementation for recombine using the

DSEL described in Section 4.4. e function build constructs an agent from

two strand of genetic information, if possible. e user must provide an imple-

mentation of this function; this will be discussed in Section 4.6.

Finally, the makeOffspring function takes two agents and aempts to pro-

duce offspring. A default implementation is provided, which calls produceGamete

to produce a single strand of genetic information from each parent, pairs the two

strands to create a genome for the child, and calls build to construct the child.

e ReproductiveAPI from the ALife.Creatur.Genetics.Reproduction.

Sexual module is shown below.

class Reproductive a where

type Strand a

produceGamete :: RandomGen r => a -> Rand r (Strand a)

build :: AgentId -> (Strand a, Strand a) -> Either [String] a

makeOffspring :: RandomGen r

=> a -> a -> AgentId -> Rand r (Either [String] a)

70

4.4 Gene recombination

As described in Section 4.3, reproduction of both Plants and Bugs involve shuf-

fling a pair of sequences to produce two new pairs, and possibly discarding one

of the sequences. Additionally, occasional random mutations are allowed. e

ALife.Creatur.Genetics.Recombinationmodule in theCréatúr library pro-

vides a DSEL for genetic recombination. ese operations can be applied with

specified probabilities and combined in various ways. Two common operations

are crossover and cut-and-splice. In crossover (Figure 4.1), a single crossover

point is chosen. All data beyond that point is swapped between strings. In cut-

and-splice (Figure 4.2), two points are chosen, one on each string. is generally

results in two strings of unequal length.

Before: After:

Figure 4.1: Crossover

Before: After

Figure 4.2: Cut-and-splice

Here’s a sample program that might be used to shuffle two sequences of

genetic material. (e numbers 0.1, 0.01, and 0.001 are used for illustration.)

withProbability 0.1 randomCrossover (xs, ys) >>=

withProbability 0.01 randomCutAndSplice >>=

withProbability 0.001 mutatePairedLists >>=

randomOneOfPair

71

To illustrate how this program would work, suppose this program acted on

the following pair of sequences:

([A,A,A,A,A,A,A,A,A,A],[C,C,C,C,C,C,C,C,C,C])

e first line of the program has a 10% probability (0.1) of performing a simple

crossover at a random location, perhaps resulting in:

([A,A,A,A,A,A,A,C,C,C],[C,C,C,C,C,C,C,A,A,A])

e second line of the program has a 1% probability (0.01) of performing a cut-

and-splice, perhaps resulting in:

([A,A,A,A,C,A,A,A],[C,C,C,C,C,C,A,A,A,C,C,C])

e third line of the program has a 0.1% probability (0.001) of mutating one or

both sequences, perhaps resulting in

([T,A,A,A,C,A,A,A],[C,C,C,C,C,C,A,A,C,C,C,C])

Aer the first three operations, we have two new sequences. In this example,

we only want one of the sequences, so the final line randomly chooses one.

To perform more than one crossover, the operation can simply be repeated

as shown below. (e numbers 0.1, and 0.08 are used for illustration.)

withProbability 0.1 randomCrossover (xs, ys) >>=

withProbability 0.08 randomCrossover (xs, ys)

Alternatively, we can choose the number of crossover operations at random.

e function repeatWithProbability performs an operation a random num-

ber of times, such that the probability of repeating the operation n times is pn.

(e number 0.1 is used for illustration.)

72

repeatWithProbability 0.1 randomCrossover (xs, ys)

Table 4.1 contains the full list of available operators.

4.5 Gene expression

e Diploid class, in the module ALife.Creatur.Genetics.Diploid, repre-

sents paired genes or paired instructions for building an agent. Diploid (shown

below) contains the function express. Given two possible forms of a gene or

gene sequence, express takes into account any dominance relationship, and

returns a gene representing the result. Créatúr uses datatype-generic program-

ming (discussed in Section 4.2) to provide a default implementation of Diploid,

including express.

class Diploid g where

express :: g -> g -> g

Default implementations of Diploid are provided for the following types:

Bool, Char, Double, Int, Word, Word8, Word16, Word32, and Word64, along

with sequences, tuples, and sums or products of any types that themselves im-

plement Genetic. In practice, this means that the user can oen create an in-

stance of Diploid without writing an implementation for express.

In the default implementation of express “small” is dominant over “large”.

Small numeric values are dominant over larger ones. If arrays are of different

lengths, the result will be as long as the shorter array, as illustrated below.

express [1,2,3,4] [5,6,7,8,9] → [1,2,3,4]

73

Table 4.1: e Recombination DSEL.

function and description
crossover :: Int -> ([a], [a]) -> ([a], [a])

Cuts the list xs at position n, cuts the list ys at position m, swaps the
ends, splices them, and returns the modified pair. e result will be
(xs[0..n-1]++ys[m..], ys[0..m-1]++xs[n..])

cutAndSplice :: Int -> Int -> ([a], [a]) -> ([a], [a])
Cuts both the lists xs and ys at position n, swaps the ends,
splices them, and returns the modified pair. is is equivalent to
cutAndSplice n n (xs,ys).

mutateList :: (Random n, RandomGen g) => [n] -> Rand g [n]
Mutates a random element in the list xs, and returns the modified list.

mutatePairedLists
:: (Random n, RandomGen g) => ([n], [n]) -> Rand g ([n], [n])
Randomly chooses xs or ys, mutates a random element in that list, and re-
turns the modified list.

randomOneOfList :: RandomGen g => [a] -> Rand g a
Randomly returns one element from the list xs.

randomOneOfPair :: RandomGen g => (a, a) -> Rand g a
Randomly returns x or y.

randomCrossover
:: RandomGen g => ([a], [a]) -> Rand g ([a], [a])
Same as crossover, except that n is chosen at random.

randomCutAndSplice
:: RandomGen g => ([a], [a]) -> Rand g ([a], [a])
Same as cutAndSplice, except that n and m are chosen at random.

withProbability
:: RandomGen g => Double -> (b -> Rand g b) -> b -> Rand g b
Either applies op to x (with probability p) and returns the result, or returns
the unmodified x (with probability p-1).

repeatWithProbability
:: RandomGen g => Double -> (b -> Rand g b) -> b -> Rand g b
Applies op to x random number of times. e probability of applying op n
times is pn.

74

Consider the following type, which has three constructors: one that takes a

Boolean parameter, one that takes an integer parameter, and a recursive version

that takes both a Boolean and an integer, as well as an array whose elements are

of the same type as its parent.

data MyType = MyTypeA Bool | MyTypeB Int

| MyTypeC Bool Int [MyType] deriving (Show, Generic)

instance Diploid MyType

Here are some examples of how express operates.

express (MyTypeA True) (MyTypeA False) → MyTypeA True

express (MyTypeB 2048) (MyTypeB 36) → MyTypeB 36

When a type has multiple constructors, the constructors that appear earlier

in the definition are dominant over those that appear later. For example:

express (MyTypeA True) (MyTypeB 7) → MyTypeA True

express (MyTypeB 4) (MyTypeC True 66 []) → MyTypeB 4

Even with complex data structures, the implementation should just “do the

right thing”.

express

(MyTypeC False 789 [MyTypeA True, MyTypeB 33,

MyTypeC True 12 []])

(MyTypeC True 987 [MyTypeA False, MyTypeB 11,

MyTypeC True 3 []])

→ MyTypeC True 789

[MyTypeA True, MyTypeB 11, MyTypeC True 3 []]

75

Given a numeric type, it would seem that the logical way to express two

values is to average them. So why use the smaller value instead? In the au-

thor’s experience with ALife, numeric genes usually control the resources used

by an agent. Examples include a gene which specifies the number of neural

connections in the agent’s brain, or a gene which controls the age at which off-

spring become mature and are no longer dependent on a parent. Choosing the

smaller number helps to ensure that agents use resources efficiently. Of course,

a different dominance rule can be used by writing a custom implementation of

express.

4.6 Constructing an agent from its genome

is section demonstrates how monads are used to create tools for constructing

agents. Asmentioned in Section 4.3, implementations of the class Reproductive

must implement the function build, which constructs an agent from a genome,

if the genome is valid. To see how this is done, recall the definition of Plant

from Section 4.1.

data Plant = Plant

{

plantName :: String,

plantFlowerColour :: FlowerColour,

plantEnergy :: Int,

plantGenome :: [Bool]

}

76

data FlowerColour = Red | Orange | Yellow | Violet | Blue

To create a plant, we need to determine the flower colour from the genome,

and set the ID and energy. e BRGCBool, BRGCWord8 and BRGCWord16modules

define a monad called Reader (unrelated to Control.Monad.Reader), which

provides functions for decoding a strand of genetic information. us, the Reader

monad is a DSEL for reading genomes; this language is defined in Table 4.2.

Table 4.2: e Reader DSEL.

function and description
get :: Reader (Either [String] g)

Reads the next gene. If it can be decoded, returns the decoded value. Other-
wise, returns a list of error messages.

getWithDefault :: g -> Reader g
Reads the next gene. If it can be decoded, returns the decoded value. Other-
wise, returns the default value

copy :: Reader Sequence
Return the entire genome.

consumed :: Reader Sequence
Return the portion of the genome that has been read (by get or
getWithDefault).

We can write a buildPlantmethod using this DSEL. e function will take

a String (a unique identifier of the plant to be created), and it will return a

program that runs in the Readermonad. at program will return a either a list

of Strings containing error messages, or a plant. us, the type signature for

the buildPlant function is:

buildPlant :: String -> Reader (Either [String] Plant)

77

Now to write the program. First, each plant needs a copy of its genome in

order to produce offspring; we can use the copy function to obtain this. Next, we

determine the colour of the plant. We could use the method get, which returns

a Maybe value containing the next gene in a sequence. But consider that our

sequence of Bools may not be a valid code for any colour. If an error occurs, we

could treat the mutation as non-viable and return Nothing. However, in this

example, we wish to create a plant no maer what errors are in the genome, so

we will use getWithDefault, with Red as the default value. All plants start life

with an energy of 10. Here is the program:

buildPlant name = do

g <- copy

colour <- getWithDefault Red

return . Right $ Plant name colour 10 g

Now, buildPlant is a function that returns a program that runs in the

Reader monad. How do we run that program? ALife.Creatur.Genetics.

BRGCBool, ALife.Creatur.Genetics.BRGCWord8 and ALife.Creatur.

Genetics.BRGCWord16 provide a function for this purpose, called runReader.

Now we have everything we need to declare Plant to be an instance of

Reproductive.

instance Reproductive Plant where

type Base Plant = Sequence

recombine a b =

withProbability 0.1

randomCrossover (plantGenome a, plantGenome b) >>=

78

withProbability 0.01 randomCutAndSplice >>=

withProbability 0.001 mutatePairedLists >>=

randomOneOfPair

build name = runReader (buildPlant name)

Recall the definition of Bug from Section 4.1.

data Bug = Bug

{

bugName :: String,

bugColour :: BugColour,

bugSpots :: [BugColour],

bugSex :: Sex,

bugEnergy :: Int,

bugGenome :: ([Word8],[Word8])

}

data BugColour = Green | Purple | Red | Brown | Orange | Pink | Blue

data Sex = Male | Female

It has have two strands of genetic information which determine the bug’s

traits. e BRGCBool, BRGCWord8 and BRGCWord16 modules define a monad

called DiploidReader for this situation. e DiploidReader monad is also

DSEL; this language is defined in Table 4.3.

Our buildBug method will take a String (a unique identifier), and it will

return a program that runs in the DiploidReadermonad. e implementation

79

Table 4.3: e DiploidReader DSEL.

function and description
getAndExpress
:: (Genetic g, Diploid g) => DiploidReader (Either [String] g)
Reads the next pair of genes from twin strands of genetic information. If the
genome can be decoded, takes into account any dominance relationship and
returns the decoded value. Otherwise, returns a list of error messages.

getAndExpressWithDefault
:: (Genetic g, Diploid g) => g -> DiploidReader g
Reads the next pair of genes from twin strands of genetic information. If the
genome can be decoded, takes into account any dominance relationship and
returns the decoded value. Otherwise, returns the default value

copy2 :: DiploidReader DiploidSequence
Returns the entire genome (both strands).

consumed2 :: DiploidReader DiploidSequence
Returns the portion of each strand that has been read (by get or
getWithDefault).

80

is similar to buildPlant, except that the single-strand operations have been

replaced with versions that work with both strands.

buildBug :: String -> DiploidReader (Either [String] Bug)

buildBug name = do

sex <- getAndExpress

colour <- getAndExpress

spots <- getAndExpress

g <- copy2

return

$ Bug name <$> sex <*> colour <*> spots <*> pure 10 <*> pure g

e runDiploidReader function runs a programwrien in the DiploidReader

DSEL and returns the result. Now we can implement Reproductive.

instance Reproductive Bug where

type Base Bug = Sequence

produceGamete a =

repeatWithProbability 0.1 randomCrossover (bugGenome a) >>=

withProbability 0.01 randomCutAndSplice >>=

withProbability 0.001 mutatePairedLists >>=

randomOneOfPair

build name = runDiploidReader (buildBug False name)

e BRGCBool, BRGCWord8 and BRGCWord16 modules also define a monad

called Writer, used for encoding genetic information. is is useful for gen-

erating an initial population. e Writer DSEL consists of one function, put,

which writes a gene to a sequence.

81

One approach to creating an initial population is to feed random strings of

genetic information into the function that builds the agent, but instruct it to keep

only asmuch of the sequence as it needs to build a complete agent. e functions

consumed (from the Reader DSEL) and consumed2 (from the DiploidReader

DSEL) are useful here. For example, we can modify the buildBug method from

Section 4.6 to accept a Boolean that tells it whether or not to discard the unread

portion of the sequences.

buildBug :: Bool -> String -> DiploidReader (Either [String] Bug)

buildBug truncateGenome name = do

sex <- getAndExpress

colour <- getAndExpress

spots <- getAndExpress

g <- if truncateGenome then consumed2 else copy2

return $

Bug name <$> sex <*> colour <*> spots <*> pure 10 <*> pure g

4.7 Limitations

Evolution in the Créatúr framework is limited by the data types and build func-

tions defined by the user. For example, the Plant type allows the flower colour

to be red, orange, yellow, violet or blue. If the initial population of Plants con-

tained only red and yellow flowers, the species could evolve orange, violet and

blue flowers. However, it could not evolve flowers or other colours, or flow-

ers with spots. Similarly, Plants could not evolve legs or sexual dimorphism.

e buildPlant function expects a single strand of genetic material, so Plants

82

could not evolve into diploid organisms. e Bug species cannot evolve wings

or tails because those fields do not exist in the Bug type, and they cannot evolve

a different ploidy because it is not supported by the buildBug function.

In addition to recombination and mutation, there are other types of genetic

changes that occur in biology. Horizontal gene transfer is the mechanism where

genetic material is transferred directly from one organism to another instead of

vertically from parent to offspring. It is a common mechanism for the devel-

opment of antibiotic resistance [142]. ere are three types of horizontal gene

transfer: transduction, where foreign genetic material is introduced by a virus,

conjugation, where genetic material is transferred between organisms in direct

contact, and transformation, where an organism incorporates naked genetic ma-

terial from its surroundings [142]. Although Créatúr does not implement these

mechanisms, the user could implement them using the monads provided.

4.8 Summary

Re-factoring the Créatúr framework and wains code into re-usable packages

makes it easier to create new agent types and experiments. Agent caching can

help to reduce I/O time by reducing the number of times an agent must be read

from storage. Users can define constraints on statistics which must be satis-

fied or the experiment will halt; this can help the user identify problems more

quickly and avoid wasting processing resources on experiments which are not

progressing satisfactorily. is is particularly useful as experiments may require

multiple days to run.

e automatic population “balancing” feature eliminates the need to repeat-

83

edly adjust the experiment configuration as agents learn the assigned task. Chap-

ters 8 and 9 will present a series of experiments; in each case, a single configu-

ration was used throughout the duration of the experiment.

Créatúr supports both sexual and asexual reproduction, with a flexible DSEL

to control recombination andmutation. It was straightforward to use the datatype-

generic programming feature of GHC to specify how to derive instances of

Genetic and Diploid. e user has it even easier; they can simply declare

their custom types to be instances of these classes, taking advantage of the de-

fault implementation provided by Créatúr.

Each of the DSELs developed for Créatúr required only a small set of op-

erations; it was easy to embed them in Haskell. is avoids the need to design

a language and write a parser for it. e user does not have to learn a “new”

language, and rather than being restricted to the semantics of the DSEL, the user

has access to all the features of Haskell, if needed. Finally, using monads for the

Reader, DiploidReader and Writer DSELs allowed us to isolate the stateful

computations required to read and write genes.

e full source code for Créatúr is available on GitHub [143]; a tutorial is

also provided [144].

84

Chapter 5

Improving the wain

is chapter describes the newwain implementation, which is at the core of the

research described in this thesis, and discusses some of the changes that have

been made since the original implementation.

5.1 Aritecture

e wain implementation was originally combined with the framework; the

code has nowbeen re-factored into a set of packageswhich communicate through

APIs, making it easier to extend and maintain. In the original implementation,

wains could only interact with grey-scale images, and other wains. e new

implementation includes custom wains for working with two data formats, au-

dio and numeric vectors. A genericwain implementation is also available, upon

which new custom wains can be based.

Figure 5.1 shows the architecture for a typical experiment usingwains. Sup-

pose xxxx indicates the data format used in the experiment (e.g., vector, image,

85

creatur

creatur-xxxx-wains

creatur-wains

exp-xxxx-yyyy-wains

Figure 5.1: Architecture for a typical experiment.

or audio), and yyyy indicates for the desired behaviour of the wains (e.g. clas-

sifying, forecasting, or clustering). We will examine each component in the

diagram, beginning at the boom and moving upward.

e creatur package (Figure 5.1) provides the framework, and an Appli-

cation Programming Interface (API) of common functions which are used by

other packages. e functionality provided by this package has already been

discussed in Chapter 4.

e creatur-wains package (Figure 5.1) provides a generic wain imple-

mentation, and an API for common functions that a specific wain implementa-

tion may need. It uses the automatic genetic encoding and decoding provided

by the creatur package.

e package creatur-xxxx-wains (Figure 5.1) is a placeholder for a pack-

age that implements awain able to read xxxx data, and choose from a predefined

repertoire of actions. Typically such a package would use the automatic genetic

encoding and decoding provided by creatur. e currently available packages

that can be used in this slot in the architecture are listed below.

creatur-audio-wains A wain that interacts with MFCC feature vectors for au-

dio samples.

creatur-image-wains A wain that interacts with grey-scale images.

86

creatur-uivector-wains Awain that interactswith numeric vectors, where each

vector element is in the interval [0, 1].

e package exp-xxxx-yyyy-wains (Figure 5.1) is a placeholder for a pack-

age that sets up the experiment according to a configuration file, reads the data

and presents it to the wains, defines the repertoire of actions that a wain can

take, and determines the reward system. Typically it would use tools for man-

aging a daemon, task scheduling, logging, and managing persistence from the

package creatur, and thewain implemented in the package creatur-xxxx-wains.

e currently available packages that can be used in this slot in the architecture

are listed below.

exp-audio-id-wains Experiment to identify samples of spoken numerals.

exp-image-id-wains Experiment to identify images of handwrien numerals.

exp-uivector-prediction-wains Experiment to forecast the next value of a vari-

able, given historical values of the variable of interest, and the historical

values of related variables (optional).

A typical ecosystem for wain experiments contains two types of objects,

wains and data. Using the Créatúr API, the user writes a simple daemon which

reads the current list of wains, queues thewains in random order, and processes

the queue, giving each wain a CPU turn. A different random order is used to

ensure that no wain has an unfair advantage. For example, the pool of energy

rewards available for each CPU turnmay be fixed, and could be exhausted before

the turn is finished. If they were always processed in the same order,wains near

the end of the list could receive less energy on average.

87

e daemon then selects one or more objects, where each object may be a

data object or another wain, and presents them to the wain whose CPU turn

it is, prompting it to select a response from a predefined set of actions. e

daemon runs the action, determines the appropriate rewards for the selected

action and gives them to thewain. e daemon also applies the metabolism cost

(which will be discussed in Section 5.3), and returns the wain to the pool. e

daemon is also responsible for housekeeping tasks such as separating children

from parents when the children reach maturity, and removing wains from the

population when they exceed the maximum age set by the user.

5.2 Condition

e factors related to the wain’s state of health and contentment are called its

condition. Like biological animals, wains try to act in ways that will improve

or at least maintain their condition. is section defines those factors, and dis-

cusses how wains evaluate their condition.

Wains have an energy level in the interval [0, 1]. ey gain or lose energy as

a result of the reward system, which is unique to the experiment. For example, a

wainmight be rewarded for accurately identifying a paern. If awain’s energy

falls below zero, it dies.

Wains also have a boredom level and a passion level, each in the interval

[0, 1]. e wain’s boredom level is set to one at birth. Depending on the reward

system, boredommight be set to zero as a reward for novelty-seeking behaviour.

Aer the reward, the passion level will increase steadily until the next reward

(up to a maximum of one). ewain’s passion level is set to one at birth, and set

88

to zero when it mates. Aer mating, the passion level will increase steadily until

the next mating (up to a maximum of one). In the original implementation, the

rate at which the passion and boredom levels increased was fixed, and identical

for allwains. In the new implementation, these rates are genetically determined.

Collectively, the wain’s energy level, passion level, boredom level, and whether

or not it is currently rearing a child, constitute its condition.

Wains seek to maximise their happiness. In the original implementation,

happiness was given by a weighted sum of the wain’s energy level, its passion

level, and its boredom; the weights were fixed. Happiness in the new implemen-

tation also takes into account a wain’s parental status, which might encourage

wains to rear children for longer, counterbalancing the drive to rear children

quickly (caused by the higher metabolism cost a wain pays when rearing chil-

dren). e weights are now genetically determined, which allows evolution to

optimise the equation for survival. e new happiness equation is

happiness = wee+ wp(1− p) + wb(1− b) + wll, (5.1)

where e is the wain’s energy level; p its passion level; b its boredom level; l is

1 if the wain is currently rearing a child, 0 otherwise; and we, wp, wb, wl are ge-

netically determined weights. e weights are normalised so that the happiness

lies in the interval [0, 1].

Because the weights are genetically determined, each agent can have a dif-

ferent definition of happiness, which need not relate to the agent’s fitness (in

Darwinian terms). An agent could have weights that cause it to be happier when

it is less fit. However, such an agent would tend to further reduce its fitness as it

89

seeks to maximise its happiness, and would likely die young and produce fewer

offspring. Over many generations, we would expect agents that a sensible defi-

nition of happiness (i.e., where the weights cause them to be happier when they

are fit) to dominate the population. us, in the long run, happiness should be

somewhat correlated to fitness.

e original implementation used the boredom field to encourage wains to

more fully explore their environment, by rewarding playwith a decrease in bore-

dom. However, it is not required for all experiments. When not required, it can

simply be ignored; the boredom level will remain constant throughout a wain’s

life, and thus will not affect its behaviour.

Wains are rewarded (with energy, a reduction in boredom, or a reduction

in passion) when they perform desirable behaviours. is increases their happi-

ness, which encourages them to repeat the behaviour. For example, a wain that

makes an accurate prediction might be given an energy reward. In the original

implementation, the reward system was fixed. In the new implementation, the

reward system is customised for each experiment.

It should be noted that terms such as “happiness”, “boredom’, “passion’, and

“metabolism” (introduced in the next section) are intended only as convenient

mnemonics for some important numeric values. Wains do not feel happiness,

boredom or passion; they do not have a biological metabolism. In 1976, McDer-

mo [145] was critical of this sort of “wishful mnemonic” because it might imply

that the concept which inspired the mnemonic (such as happiness or boredom)

was well-understood and in some sense solved. However, a modern scientific

audience is more familiar with the limitations of AI, and is therefore less likely

to read more into these terms than is intended. Having warned the reader not

90

to infer too much meaning into these terms, the author feels justified in using

them for their mnemonic value.

5.3 Metabolism

Everything awain does, even just being alive, should have an energy cost. (is

drives evolution by ensuring that unfit individuals are unlikely to survive long or

producemany children.) Wains lose energy at regular intervals; this is called the

metabolism tax. In the original implementation, the metabolism tax was a fixed

calculation based on the wain’s brain complexity and sensory capacity. In the

new implementation, the calculation of the metabolism tax can be customised

for each experiment, and is deducted every time a wain has a CPU turn. (e

design of the metabolism tax calculation for one set of experiments is discussed

in Section 9.1.1.) As a rule of thumb, it is convenient to scale the tax according

to one or more of the most scarce resources used by wains. Typically this is the

CPU usage (for which the number of classifier models may be good proxy).

5.4 Appearance

Wains have one external sensory input, used to recognise both data objects and

otherwains. Awain’s appearance is simply data; it is in the same format as the

data used in the experiment. us, the appearance of a wain that interacts with

images is also an image; the appearance of a wain that works with audio sam-

ples is an audio sample. Typically, the initial population of wains generated for

an experiment will all have an identical appearance, one that is easily distin-

91

guished from ordinary data objects. For example, if the data consists of images

of handwrien numerals, an image of an ‘X’ might be used for the appearance

of wains in the initial population.

A wain’s appearance is genetically determined. Over time, recombination

and mutation can cause the appearance of wains to diverge from that of the

initial population. is could allow wains to estimate how genetically close

another wain is, by observing the similarity of its appearance. In theory, this

could allow wains to choose whether or not to co-operate with others based

on kinship. If sub-populations emerge with strong genetic differences such that

offspring from cross-mating would no longer be viable, or at least not fertile,

wainswould likely be able to differentiate between their own kind and other by

their appearance. Speciation occurs when previously interbreeding populations

no longer (or only rarely) produce fertile offspring. is might occur due to

genetic, behavioural, or anatomical differences, or geographic separation. In the

case of soware-based ALife such aswains, the first two causes of speciation are

most clearly applicable. However, some sort of simulated anatomy or geography

could be implemented; this might also lead to speciation.

5.5 Brain

e brain is responsible for choosing appropriate actions in response to the ob-

jects that the wain encounters. To do this, it creates an internal set of models

representing the types of objects thewain has seen. ese models are fluid; they

become broader or narrower according to the inputs a wain receives during its

lifetime.

92

In the original implementation, the repertoire of available actions was fixed.

In the new implementation, this is customised for each experiment. For example,

if awain encounters a data object, it might aempt to mate with it (whichmakes

sense if the object is a wain) or classify it (which makes sense if the object is a

data object).

e brain has been completely re-designed since the original implementa-

tion. One of the most interesting changes is that the brain now predicts how

happy the wain will be aer each possible response. e new brain design will

be presented in Chapter 7.

5.6 Genetics and reproduction

In the original implementation, the wain genome was encoded as a series of

building instructions. Adding a new gene would require writing a custom en-

coder and decoder for that gene. e new implementation uses the encoding

tools described in Chapter 4. When encoded, the wain genome consists of a se-

quence of Word8s. Most genes use the default encoding scheme and the default

gene expression rules.

Depending on the needs of the experiment, mating typically occurs in one

of two ways: free mating or directed mating. In free mating, when a wain en-

counters another wain, the first wain can choose to flirt, at which point it will

pay the flirtation tax specified in the experiment’s configuration. e flirtation

tax could help to encourage wains to choose the most suitable partners rather

than flirting indiscriminately. If the first wain is not currently rearing a child,

mating will occur. Free mating giveswains control over when to mate, and with

93

whom. Since flirtation and child-rearing cost energy, wains have an incentive

to recognise others of their kind. A wain’s appearance is genetic and subject

to mutation, differences in appearance are likely to be correlated with other ge-

netic differences. As a result, wains could learn to distinguish close relatives

from distant relatives or unrelatedwains, which could encourage the formation

of family groups or tribes.

e new implementation provides an alternative strategy, directed mating,

in which wains are randomly allowed to mate with a frequency specified in the

experiment’s configuration. Directed mating can be useful for simpler exper-

iments where co-operation and other social behaviours are not needed. Since

the wains do not have control over mating, there is no need for a flirtation tax.

Again, if the first wain is not currently rearing a child, mating will occur.

As discussed in Section 2.10, wains are diploid (they have two strands of

genetic information), but they only have one sex (any wain can mate with any

other wain). e child’s genes are assembled using the sexual reproduction ap-

proach discussed in Section 4.3. Each parent contributes approximately half of

the child’s genetic material, using the algorithm which was discussed in Sec-

tion 4.4. e frequency of crossover, cut-and-splice, and mutation were 10%,

1%, and 0.1%, respectively. In the original implementation, these values led to

rapid evolution and good diversity in the gene pool.)

e genetic strands contributed by each parent are paired, and the domi-

nance rules are applied to determine the traits to be expressed in the child. If

possible, a newwain (the child) is constructed from the result. (Due to mutation

or crossover, it is possible for a gene sequence to end prematurely or not encode

a valid sequence of alleles.) Each parent transfers some energy to the child; the

94

amount transferred is determined by the parent’s genes.

5.7 Child-rearing

When a child is born, the parent who initiated the mating (by flirting) becomes

the child’s carer. e child remains with the carer until it is mature; the age of

maturity is genetically determined. During this time, the child shares in any

energy rewards or penalties earned by the carer (apart from metabolism costs,

discussed in Section 5.3). e fraction of the energy reward or penalty given to

the child is also genetically determined.

A child receives the same sensory inputs as the carer, allowing it to build a

mental set of models representing its environment. In the original implemen-

tation, children did not learn to make decisions. In the new implementation,

a child observes its carer’s actions, and learns decision rules based on the as-

sumption that the carer’s action in response to each situation is appropriate.

is form of learning uses the imprintingmechanism which will be described in

Section 7.4.

5.8 Summary

e wain code has now been re-factored into a set of reusable packages which

communicate through APIs. Wains can now be used to perform multiple tasks

with a variety of data formats, and support is provided for future extensions to

handle new tasks and data formats. Wains now have a more flexible concept of

“happiness”. Available actions and reward systems can be customised for each

95

experiment. Finally, the wain code takes advantage of the improved Créatúr

framework for reproduction.

e improvements to the brain will be discussed in Chapter 7.

96

Chapter 6

e Self-generating model

In support of the brain improvements planned forwains, the SOMwas modified

to create the Self-Generating Model (SGM). is chapter describes the motiva-

tion for those changes, and the design and testing of the SGM.

e requirements for a classifier used in intelligent data mining ALife agents

are rather different than for more common applications. For example, in recog-

nising handwrien or spoken numerals, it is not necessary to preserve the topol-

ogy of the input data set. (We may not be interested in knowing whether a

particular ‘3’ is more similar to an ‘8’ or a ‘6’.) In the original implementation

of wains, a small modification was made to the SOM to improve performance.

By updating only the winning node, the topology-preserving ability of the SOM

was sacrificed in favour of speed.

If we dispense with topology preservation, what is the cost? Consider that

in addition to a SOM-like classifier, the brain of an intelligent data mining ALife

agent might include a mechanism that uses the information provided by the

classifier to determine what response to take. is is the approach used in the

97

a b

cd

e
f g

... ...

...

...

...

...
model good response
 a <unknown>
 b <unknown>
 c eat...

...

classifier decider

"current scenario
is type a" "let's eat!"

Figure 6.1: Decision-making using a classifier that preserves topology.

original implementation; the mechanism was called the decider. Suppose that

the classifier assigns the label a to the current scenario, and the decider does

not know a good response to a. If the classifier preserves the topology of the

input data, the decider can look for the nearest neighbour of a for which it does

know a good response, and choose that (see Figure 6.1). If a good response to a

neighbour of a is likely to be a good response to a, this tactic could benefit the

agent’s survival.

However, there may be other ways to achieve the same result. e classifier

could report the similarity of the scenario to all models, including the model la-

belled a. (is information is calculated anyway as part of the SOM algorithm.)

Without needing to know anything about the topology used by the classifier, the

decider can look for known responses to models that are similar to the scenario,

and choose a response that is known to be good for a similar model (see Fig-

ure 6.2). us, we can sacrifice topology preservation in favour of other goals,

introduced below.

One advantage of the SOM for intelligent agents is that the models can be

extracted from the classifier, making it easier to understand how an agent per-

ceives the object, and evaluate any decisions the agent makes in response. is

is a desirable feature to keep. In a traditional Artificial Neural Network (ANN),

98

model good response
 a <unknown>
 b <unknown>
 c eat...

...

classifier decider"current scenario
is type a, which is

83% similar to
type c, 77% to

type b..." "let's eat!"

b

e

g

d
f

c

a

Figure 6.2: Decision-making using a classifier that does not preserve topology.

it can be difficult or even impossible to analyse why the net makes certain clas-

sifications.

Many SOM modifications are motivated by a desire for greater accuracy in

classifying; however, thismay not be necessary for some agent implementations.

In a multi-agent system one can ask the same question of multiple agents, each

with a different set of lifetime experiences, to get independent opinions. By

averaging the responses, a “wisdom of the crowd” effect could produce greater

accuracy than a single agent could achieve. us, increasing accuracy was not

a goal for this project.

However, early accuracy is an important goal. Agents continue to learn

throughout their lives, but they cannot wait until they have a full, final set of

models to begin learning rules for survival. ey need to be able to “hit the

ground running”. An agent should have a useful, if small, set of models early in

life; this will allow it to experiment with possible responses to objects in their

environment, and to learn from the results.

Another goal in adapting the SOM was model stability. Agents make de-

cisions based on the paerns that they encounter, and the mental categories

(node labels) associated with the paerns. Agents experiment by trying dif-

ferent actions in response to each cluster of paerns. rough trial and error,

99

each agent develops rules that select the appropriate action to take in response

to each paern cluster. If models change to such a degree that they no longer

match paerns that they used to match, agents may need to “unlearn” existing

rules and replace them with new ones.

As will be shown in Section 6.3, SOM models can be very unstable. is can

make it more difficult for agents to learn appropriate responses for their envi-

ronment. For example, suppose the environment has both edible and poisonous

berries; and an agent can distinguish between them by some characteristic such

as colour. We would expect an agent to develop at least one model that matches

edible berries but not poisonous ones. e agent has a beer chance of sur-

viving if it learns to eat objects that match this model. Now imagine that the

model changes so much that it now matches the poisonous berries. e eating

response that the agent has learned is now dangerous. In order to survive, the

agent must “unlearn” the eating response and learn a more appropriate action.

Alternatively, if the model changes from matching poisonous berries to edible

ones, the agent may have ruled out eating anything that matches this model,

and may never try eating the edible berries. is could be disastrous if there is

only one source of food.

Once those goals are met, there are additional features that would be desir-

able in a modified SOM. It would be advantageous to have a faster algorithm;

this can be achieved if weminimisewhat the author callswasted models. Mod-

els that will not be used to classify future paerns are wasted; the computational

effort to create and update those models is unnecessary. is is especially im-

portant when working with population of agents, each with their own SOMs, as

any inefficiencies in the algorithm would be amplified.

100

Note that model stability and model usage are independent concepts. A

model can be stable (continuing to be a good match for the stimulus it was cre-

ated in response to) but wasted (is not the winning node at any point during the

testing or classification phase).

Finally, the modified SOM should be suitable for a variety of data mining

applications. us, it should be a generic algorithm, not one that was tailored

to a specific type of data such as images or audio samples.

Whymodify the SOM, when other classifier algorithms are available that are

also capable of unsupervised learning? It is oen impractical for an agent to keep

a copy of every data input it has encountered during its life; fortunately the SOM

only requires that we keep the models. Contrast this with an algorithm such as

k-means which requires that we re-calculate the centroid at each step, accessing

all of the data seen previously [84]. Particle SwarmOptimisation (PSO) similarly

iterates over all the data, making it unsuitable for this application [146].

Learning Classifier Systems (LCSs) [147, Section 3.9] learn the best action

to take in response to a set of conditions. As such, the LCS might be suitable

as a replacement for both the classification and decision-making components in

a wain (to be discussed in Section 6.4). However, it seems overkill to replace

just the classifier with an LCS. Finally, as mentioned earlier, SOM models can

be inspected directly. A trained neural network stores what it has learned as

weights [84]; making it difficult to extract the models.

101

6.1 Self-Generating Model

To satisfy these goals, the basic SOM algorithm has been adapted to produce the

SGM algorithm (see Algorithm 2). e SGM can be initially empty, or it can be

initialised with a set of (possibly random) models. Step 2, adjusting the winning

node, has been modified to allow the classifier to grow as needed and produce

models that are useful as soon as they are created. In addition, Step 3 of the

SOM algorithm, adjusting models in the neighbourhood of the winning node,

has been eliminated in an aempt to improve performance andminimise wasted

models. e difference threshold helps to ensure that models do not change too

much during the lifetime of the SGM, providing model stability Like the SOM,

the SGM design is generic; it has not been tailored to a specific kind of data.

Algorithm 2 SGM algorithm.
For each input paern,

1. Compare the input paern to all models in the SGM. e node with the
model that is most similar to the input paern is called the winning node.

2. If the difference between the input paern and the winning node’s model
is greater than the difference threshold, and the SGM is not at capacity
(number of models < maximum), a new model is created that is identi-
cal to the input paern. Otherwise, the winning node’s model is adjusted
to make it slightly more similar to the input paern. e amount of ad-
justment is determined by the learning rate, which typically decays over
time.

Note that while SGM can grow (add new models), it can never contract (re-

move existing models). As discussed in Section 2.10, it was found that the abil-

ity to remove models did not confer an evolutionary advantage on the original

wains.

102

6.2 Experimental set-up

e experiments described in this chapter used the MNIST database (presented

in Section 2.13.1). e database images were used without modification. For all

experiments, the SOM used the learning function given by Equation 6.1,

f(d, t) = re−
d2

2w2 , (6.1)

where

r = r0

(
rf
r0

)a

, w = w0

(
wf

w0

)a

, and a =
t

tf
.

e parameter r0 is the initial learning rate, rf is the learning rate at time tf ,

w0 is the radius of the initial neighbourhood, and wf is the radius of the neigh-

bourhood at time tf . For the winning node, d = 0, and Equation 6.1 reduces to

Equation 6.2,

f(t) = r = r0

(
rf
r0

)a

. (6.2)

Equation 6.2 was used as the learning function for the SGM in all experiments.

us, at all times the learning rate of the SGM matches the learning rate of the

winning node in the SOM. is permits a fairer comparison of the SOM and the

SGM.

e Mean of Absolute Differences (MAD) was used as a measure of differ-

ence between two images. e absolute difference between each pair of corre-

sponding pixels in the two images is calculated and the mean taken, to obtain

a number in the interval [0, 1], where 0 indicates the images are identical and

1 indicates that they are maximally dissimilar. As all the images in the MNIST

database have the same size, viewing direction (normal to the plane of the image,

103

from above), and comparable intensity, the MAD is an appropriate difference

metric.

e models for each SOM were initialised with images containing random

low pixel values similar to the background of the MNIST images. Each SGMwas

initially empty, having no nodes or models.

Once a classifier has been trained, the nodes must be labelled with the nu-

meral represented by the associated model before the classifier can be used for

testing. To do this, the number of times each node was the winning node for

each numeral during the training phase was counted. e node was then la-

belled with the numeral it most oen matched.

6.2.1 Experiment 1: Early accuracy

Recall that agents cannot wait until they have a full, final set of models to begin

learning appropriate responses. is experiment determines how long it takes

to develop a useful, if small, set of models. is experiment used a SOM and SGM

of similar size. Aer 25 training images, chosen at random, had been presented

to a classifier, its accuracy was tested on the entire test set, presented in random

order. is process was repeated with successively greater amounts of training

(50 images, then 75, 100, 150, 200, 250, 300, 400, and finally 500 images).

Table 6.1 shows the configuration of the classifiers for this experiment. e

values r0 and rf were chosen so that the learning rate would start at maximum

and be near zero by the end of training. e values w0 and wf were chosen

through experimentation. e value of tf is the total number of training images

(even though only a small number of images was actually presented).

104

Table 6.1: Configuration of SOM and SGM in Experiment 1.

variable SOM SGM
node count 100 96
grid type rectangular unconnected nodes

r0 1 1
rf 1×10−4 1×10−4

w0 2 not applicable
wf 1×10−4 not applicable
tf 60000 60000

difference threshold not applicable 0.165

Recall that if the difference between an input paern and the winning node’s

model is greater than the difference threshold, and the SGM is not at capacity,

a new model will be created. Once capacity is reached, the SGM will always

update themost similar model, which increases the chance of amodel eventually

representing a different numeral than it was created for. For a fair comparison,

it is important that the SGM and SOM be of similar size. However, an SGM

may not create the maximum number of models. In order to maximise model

stability, a SGM with a maximum capacity much larger than necessary (2000

models) was used, allowing the difference threshold to indirectly control the

number of models created.

To find an appropriate value for this difference threshold, a random set of 500

images was chosen, and the MAD measured between all pairs of images. e

number 500was chosen because it would result in enough comparisons (250,000)

to provide the accuracy needed, while being small enough to be calculated in a

few hours. e results are shown in Table 6.2. Experimenting with the values

between the two means showed that a threshold of 0.165 resulted in the SGM

105

creating 96 models, which was useful for comparison with the 100 models in the

SOM.

Table 6.2: Analysis of MAD between MNIST images, based on a sample of 500
images. e first column contains themean of the mean absolute difference; the
second, the standard deviation of the mean.

mean std. dev.
same numeral 0.135 0.0436

different numerals 0.171 0.0374

6.2.2 Experiment 2: Full training run

To compare the overall accuracy of the SOM and SGM, the 60,000 images in

the MNIST training set were presented, in random order, to a small and large

SOM, and a small and large SGM. Next, the 10,000 images in the test set were

presented, again in random order, to the SOM and the SGM for classification.

is permied a comparison of the accuracy, speed, model stability and number

of wasted models for the two classifiers.

Table 6.3 shows the configuration of the classifiers for this experiment. Pre-

liminary trials showed that the accuracy of both the SOM and the SGM depends

strongly on the number of models, weakly on r0, and very weakly on the other

configuration parameters. erefore, for this experiment the classifier size was

allowed to vary while r0 and rf were kept constant. e values r0 and rf were

chosen so that the learning rate would start high and be near zero by the end

of training. e values w0 and wf were chosen through experimentation. e

value of tf is the number of training images.

106

Table 6.3: Configuration of SOM and SGM in Experiment 2.

variable SOM SGM
grid size 4×4, 6×6, 8×8, 10×10, 15×15, initially empty,

20×20, 25×25, 30×30, 35×35, grows as needed
40×40, 45×45, 70×70

grid type rectangular unconnected nodes
r0 0.1 0.1
rf 1×10−4 1×10−4

w0 2 not applicable
wf 1×10−4 not applicable
tf 60000 60000

difference threshold not applicable 0.09, 0.1, 0.105, 0.11, 0.115,
0.12, 0.13, 0.14, 0.15, 0.16,
0.17, 0.18, 0.19, 0.2, 0.21

6.3 Results and interpretation

6.3.1 Experiment 1: Early accuracy

Figure 6.3 compares the accuracy of the SOM and SGM during the early part of

training. e SGM reaches a usable level of accuracy (i.e., sufficient for an agent

to base decisions on) faster than the SOM.

6.3.2 Experiment 2: Full training run

Figures 6.4 and 6.5 show one pair of small (10x10) classifier models aer all of

the training images have been presented to the small classifiers. From Figure 6.4

we can see that many of the models are blurry combinations of more than one

numeral. e topology of the input data has been partially preserved; models of

the same numeral tend to be near each other.

ere are four shaded models in Figure 6.4. ey were not winning nodes

107

● ●
●

●

●

● ●
●

●

●

0.00

0.25

0.50

0.75

1.00

100 200 300 400 500
number of training images

ac
cu

ra
cy

classifier

● SGM

SOM

Figure 6.3: Early accuracy comparison

at any point during testing, were not used to classify testing images and are

counted as wasted. An unmatched model could be assigned the same label as

was assigned to a majority of its neighbours. However, this would result in the

le pair of unmatched models (shaded) being assigned labels for the numeral ‘1’,

even though they are clearly beer matches for ‘0’! e right pair of unmatched

models are very ambiguous; it may be beer not to use them.

Figure 6.5 shows the small SGM aer training. We can see that the topology

has not been preserved. Unfortunately, there are still many ambiguous models

(models that would likely match two or more different numerals), perhaps due

to the small size of the classifier.

Figure 6.6 compares model stability for the SOM and SGM. To measure this,

the first numeral matched by each model was noted. (In the case of an SGM, this

is the numeral the model was created in response to.) is initial match was

compared to the numeral used to label the model’s node (at the end of train-

ing). If the numerals were the same, the model was counted as stable. e SGM

108

Figure 6.4: Small SOM aer all 60,000 training images have been presented.
Models are arranged in a grid. Wasted models are shaded.

Figure 6.5: Small SGM aer all 60,000 training images have been presented.
Models are unconnected; they are shown here in the order they were created.
ere were no wasted models.

109

●

●●●
●

●

●

●

●

●
●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
number of models

fr
ac

tio
n

st
ab

le

classifier
● SGM

SOM

Figure 6.6: Model stability. Larger values are beer. e lines show a loess (local
polynomial regression) data fit.

consistently achieved higher model stability.

Figure 6.7 compares model usage. A model is counted as used if it was the

winning node at any point during testing, otherwise it is considered wasted. e

SGM used more of its models, reducing the problem of wasted models.

Figure 6.8 shows the time required for training and testing the SOM and

SGM. For all but the smallest classifiers, the SGM is considerably faster than the

SOM.e primary reason for the reduction in processing time is presumably that

the SGM only updates the winning node’s model during training, while the SOM

also updates models in the neighbourhood of the winning node. In addition, the

SGM has fewer models during the early part of training, and therefore does not

need to make as many comparisons as the SOM does.

Figure 6.9 compares the accuracy of the classifiers. e accuracy is the num-

ber of times that an image was correctly identified, divided by the total number

110

●

●

●
●

●

●

●

●
●

●●
●

●

●●

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
number of models

fr
ac

tio
n

us
ed

classifier
● SGM

SOM

Figure 6.7: Model usage. Larger values are beer. e lines show a loess (local
polynomial regression) data fit.

●

●●
●

●
●

●●●●●●●●●0

250

500

750

1000 2000 3000 4000 5000
number of models

tim
e

(m
in

ut
es

)

classifier
● SGM

SOM

Figure 6.8: Processing time. Smaller values are beer. e lines show a loess
(local polynomial regression) data fit.

111

●●
●●

●●
●

●
●

●

●
●

●
●

●

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
number of models

ac
cu

ra
cy

classifier
● SGM

SOM

Figure 6.9: Accuracy. Larger values are beer. e lines show a loess (local
polynomial regression) data fit.

of images. e accuracy of the two methods appears to be comparable. For all

but the smallest SOMs, a small fraction of the nodes were not winning nodes at

any point during training. ese could have been labelled to match the majority

of their neighbours, or to match the most similar neighbour. However, there

were not enough to significantly impact the accuracy, so they were counted as

correct answers.

6.4 Summary

e SGM is a new version of the SOM that was adapted for use in intelligent

data mining ALife agents. Although the SGM sacrifices topology-preservation,

the two classifiers were equally accurate at identifying handwrien numerals.

e SGM also achieves a higher accuracy more quickly, which could allow an

112

agent to make good survival decisions with less training. Model stability was

higher in the SGM, and there were fewer wasted models, making it faster than

the SOM. e SGM could be a useful component for implementing intelligent

agents, and for other clustering or classification applications.

Chapter 7 will present a new brain design forwains, based on the SGM. e

code and results for the experiments described in this chapter are open access1.

1See http://dx.doi.org/10.5281/zenodo.45039 (som) and http://dx.doi.org/10.
5281/zenodo.45040 (exp-som-comparison)

113

Chapter 7

Improving the brain

e most significant change to the wains was the redesign of their brains. e

primary goal was to make them Popperian creatures with the ability to predict

the outcome of their actions (rather than Skinnerian creatures learning only

through blind trial-and-error), with the hope that the corresponding increase in

cognitive power would allow wains to perform useful data mining tasks. is

chapter describes the new brain design; the testing of the new design is discussed

in Chapters 8 and 9.

7.1 Seeking inspiration

Is there an existing Popperian brain architecture that can be adapted forwains?

As discussed in Section 2.4, ALife species are typically Darwinian or Skinnerian.

AnALife species that is a neuron-for-neuron simulation of a biological organism

(such as OpenWorm) might possibly be Popperian. However, such detailed sim-

ulations are too slow for this project. (For example, 10 seconds of simulated time

114

for OpenWorm requires a few days of processing on a dedicated GPU [148].) It

is desirable that an experiment with a population of hundreds of data mining

agents should real-time run on an ordinary computer; neuron-level simulations

are not fast enough.

What about a higher-level model of cognition in a higher animal? Models of

human-level (or near-human) general intelligence do exist (e.g., the Blue Brain

Project [149], BECCA [150], Nexting [151], SNePS [152], Novamente [153]);

ese are likely Popperian or even Gregorian. However, they use sophisticated

models of knowledge representation, belief representation, reasoning, and/or

planning; again they are too slow for this project.

Unfortunately, a search of the literature did not find any purely soware-

based forms of ALife that were fast enough to run multi-agent, real-time exper-

iments and would qualify as Popperian.

7.2 Making decisions

In the absence of a suitablemodel of a Popperian brain, it was necessary to create

one. e first step was to define a simple algorithm for decision-making. e

algorithm is outlined below.

1. Compare the objects the agent currently senses with its internal models,

determining how similar they are. (If the agent does not already have a

similar model, it should create one.)

2. Develop one or more hypotheses about the kind of situation the agent

is currently facing. Depending on how well the situation matches the

115

agent’s mental models, it may be advisable to consider more than one

possibility. For example, when presented with a berry, the agent should

consider the possibility that is poisonous as well as the possibility that it

is nutritious.

3. Select the most likely hypotheses to consider. It would take too long for

an agent to evaluate the effect of every possible action in every possible

scenario when a decision is required; it is beer to filter the list of hy-

potheses before making predictions. In the previous example, the berry

might be nutritious or poisonous, but it is probably safe to disregard the

possibility that it is an aacking enemy.

4. Predict the effect of possible actions on the agent’s condition. For example,

the agent might predict that eating the berry will make it 47% less hungry.

is step, together with the next, make the agents Popperian.

5. Taking into account the agent’s current condition, evaluate how the agent’s

happiness will be affected by the predicted changes to its condition. For

example, eating the berrywill onlymake the agent happier if it is currently

hungry.

6. Choose the action that will result in the greatest happiness.

e new brain architecture was designed around this six-step process.

116

7.3 e SGM and genetics

As discussed in Chapter 6, the SGM has greater model stability than the SOM,

and fewer wasted models, making it faster. For these reasons, e SGM was

chosen to be the main building block in the new brain design.

e learning function was discussed in Section 6.1 (Equation 6.2). e pa-

rameters r0, rf and tf are determined by the parent’s genes, as is the difference

threshold and the maximum number of models an SGM can contain, and the ini-

tial models (if any). Finally, an SGM needs to be able to measure the difference

between an input paern and each of its models, and to tweak a model to more

closely match an input paern. is is accomplished using a custom component

for each data type and experiment. is component, called a tweaker, may also

have genetically determined parameters.

e SGM will allow an agent to build a set of models representing its envi-

ronment and to classify (Step 1 in the decision process) the paerns it encounters

according to its internal models. However, that is only part of the brain’s job.

In order to make good decisions, an agent also needs the ability to predict the

outcome of an action (Step 4), so that it can choose the action that is expected

to produce the best outcome. (is ability to make predictions is essential if we

want the agents to be Popperian creatures.) How could this prediction-making

feature be implemented? With another SGM! e role of this second SGM is to

model the outcomes of possible actions in a variety of situations. Section 7.4

will discuss the role of the two SGMs in more detail.

117

7.4 A new brain aritecture

In the new implementation, the brain has three components: a classifier, amuser,

and a predictor. is structure is fixed; however, evolution can fine-tune oper-

ating parameters such as the learning rate. e classifier maintains models of

paerns encountered, the muser generates possible responses to situations, and

the predictor maintains models of responses selected and their outcomes.

Both the classifier and predictor are implemented using an SGM that is ini-

tially empty. e process by which the brain makes decisions is illustrated in

Figure 7.1. When one or more paerns are presented to the agent, the classifier

produces a signature, a vector whose elements indicate how similar each input

paern is to each classifier model, and reports this to the brain. For example,

suppose the agent encounters two objects and has three classifier models. e

signature might be as shown in Table 7.1. is shows that the best matches for

objects #1 and #2 are classifier models A and C, respectively.

Table 7.1: Example of a signature

classifier model
object A B C

1 0.1 0.2 0.6
2 0.9 0.8 0.3

For each object and model, the brain estimates a p-score, which might be

interpreted as an estimate of the probability that the object actually belongs

to the category represented by the model. is p-score will be used to weight

possible responses. It could be estimated as 1 − d, where d is the difference

between the object and the model. However, preliminary experiments showed

118

stimulus

response

condition

generate one or more

hypotheses about the

current scenario

predict happiness

change for each

response considered

choose

response

 which

 maximises

 happiness

map stimulus to

internal models,

update models

classi er

predict the e ect of

the action on the

wain's condition

predictor

choose one or more of

the most likely hypotheses,

generate possible

responses for each chosen

hypothesis

muser

brain
1

2

3

4
5

6

Figure 7.1: e decision-making process. e numbers refer to the steps in the
algorithm described in Section 7.2.

that this results in models that are weak matches being given too much weight

in decision-making. For example, consider Figure 7.2. e points A and B rep-

resent likely matches for the object; the possibility that the object belongs to

one of these categories should be weighted strongly when making decisions.

With this function, the estimated probabilities p(A) and p(B) should be, and

are, high. However, the point C represents a much poorer match. Given that

there are two very good matches, the brain should not give much consideration

to the possibility that the object belongs to category C . us, p(C) seems high.

As an alternative, consider the function

1− e
1− 1

1−(1−d)s (7.1)

where s is an adjustable parameter that controls the steepness of the curve. is

function was constructed to have the shape shown in Figure 7.3. Note that the

119

1-d

1

1

p

d

A
B

C

Figure 7.2: A simple p-score function.

1

1

1- e

1- 1
s

1- (1-)d()

p

d

A

B

C

Figure 7.3: A more sophisticated p-score function.

estimated probabilities p(A) and p(B) are still high, but p(C) has been reduced.

Higher values of smake the brain more likely to disregard poor matches for the

object whenmaking decisions; thus s is called the strictness. is is the approach

used by the brain in the new implementation. Table 7.2 shows the result of

applying Equation 7.1 with s = 2 to the signature in Table 7.1. e probabilities

for each object are then normalised so that the total of the probabilities for each

model is one, as shown in Table 7.3.

e brain generates hypotheses by considering each possible combination of

object and model. e p-score for each hypothesis is the product of the individ-

ual object-model probabilities. Table 7.4 shows an example of the hypotheses

120

Table 7.2: Unnormalised probabilities for signature in Table 7.1.

classifier model
object A B C

1 0.99 0.83 0.17
2 0.01 0.04 0.62

Table 7.3: Normalised probabilities from Table 7.2. As a result of rounding, the
sum of the probabilities for an object may not exactly equal one.

classifier model
object A B C

1 0.50 0.42 0.09
2 0.02 0.06 0.92

that would be generated for the signature in Table 7.1. According to the table,

the most likely hypothesis is that the agent has encountered objects matching

classifier models A and C. However, the next most likely hypothesis is that the

objects match classifier models B and C; it may be worthwhile to consider that

possibility as well.

Next, the muser chooses one or more of the most likely hypotheses, and gen-

erates a set of responses to evaluate. e number of hypotheses chosen is ge-

netically determined, and is called the agent’s depth. (Mnemonic: An agent that

considers many hypotheses before making a decision might be called a “deep

thinker”).

e predictor then estimates how each proposed response will affect each

aspect of the agent’s condition (energy, passion, boredom, and lier size). It does

this by selecting the response model that best matches the proposed response,

and returning the condition changes predicted by thatmodel, adjusted according

121

Table 7.4: Hypotheses based on probabilities in Table 7.3. As a result of round-
ing, the sum of the probabilities for all hypotheses may not equal one.

hypothesis p-score
object 1 is A, object 2 is A 1%
object 1 is A, object 2 is B 3%
object 1 is A, object 2 is C 46%
object 1 is B, object 2 is A 1%
object 1 is B, object 2 is B 3%
object 1 is B, object 2 is C 39%
object 1 is C, object 2 is A 0%
object 1 is C, object 2 is B 1%
object 1 is C, object 2 is C 8%

to the p-score for the hypothesis. If no response model is sufficiently similar, a

newmodel may be created (according to Algorithm 2). e new implementation

even provides support for measuring how similar two actions are. For example,

if an agent has a model for walking in response to a given situation, but no

model for running in that same situation, it can infer that the result of running

will be more similar to that of walking, than that of standing still. is allows

the agents to filter out unwise actions (“stupid moves”) without needing to try

them, an important advantage for Popperian creatures.

e brain combines the agent’s current conditionwith the predicted changes,

and calculates the resulting happiness change, according to Equation 5.1. e

brain chooses the action that is predicted to have the most favourable (most

positive or least negative) effect on happiness. Aer the agent has received any

rewards or penalties as a result of that action, the predictor adjusts its models

according to the actual change in happiness.

By considering more than one hypothesis, the agent can employ more subtle

122

reasoning. It can base its actions not only on what scenario it thinks it is facing,

but also on how confident it is, andwhat is likely to happen if the agent is wrong.

For example, suppose the agent considers two hypotheses, where the estimated

payoff (happiness increase) is given by Table 7.5. If the agent is reasonably con-

fident that the more likely hypothesis is actually true, the best response is action

#1. Otherwise, it may be worth the gamble to go for action #2, in hope of the

large payoff.

Table 7.5: Sample payoff matrix.

payoff if more likely payoff if less likely
hypothesis is true hypothesis is true

action #1 medium small
action #2 small large

e brain can also learn as a result of imprinting, which is a shortcut where

the agent is shown one or more paerns and an action, and concludes that tak-

ing the action in a similar situation would alter its energy, boredom level, pas-

sion level, and lier size by genetically determined amounts called imprint out-

comes. If the brain has already learned the response (either through imprinting

or through experience), subsequent imprintings will strengthen the response

models at genetically determined rates called reinforcement deltas. Imprinting

can be used to allow children to learn by observing their parents, or for adults

to learn by observing other adults. Although this featurewas originally intended

to allow agents to learn from each other, it can also be used by the operator to

train agents (i.e., one library function can be invoked for both purposes).

e new brain architecture supports analysis of a wain’s knowledge, deci-

123

sion rules, and learning. Paerns of objects in its environment are represented

as SGM models, which are in the same form as the objects themselves. (For ex-

ample, if the objects are images, the models are images that can be viewed, if the

objects are audio samples, the models are samples that can be listened to, etc.)

Logging can be configured to include detailed information about every step of

the decision-making process documented in Section 7.2, including similarity of

input paerns to existing models, creation of new models, formation and rank-

ing of hypotheses, and the predicted effect of actions on the wain’s condition

and happiness.

7.5 Summary

e new brain design has three components, a classifier to build a set of mod-

els representing paerns in the environment, a muser to generate possible re-

sponses, and a predictor to predict the outcome of actions. is allows thewain

to base its actions on what scenario it thinks it is facing, how confident it is,

the predicted outcome of the action assuming the wain’s assessment is correct,

and the predicted outcome based on alternative assessments. is ability to hy-

pothesise scenarios and to predict the outcome of an action based on similar

actions in similar situations, makes the new wains Popperian creatures. Wains

can ask themselves “what should I think about next” in the sense that they can

decide which hypotheses to consider and which potential actions to evaluate.

e new brain allows wains to be taught behaviour paerns by their parents,

otherwains, or through a formal training session run by a human experimenter.

e testing of the new brain design is discussed in Chapters 8 and 9.

124

Chapter 8

Classification with wains

As discussed in Chapter 3, it was decided that wains would be tested at both

classification and prediction tasks, to evaluate their potential as data mining

tools. is chapter describes a series of experiments designed to test the ability

of wains to classify data. (Chapter 9 will address their ability to perform predic-

tion.) ese experiments will answer the first two research questions, repeated

below.

Researestion 1: Will givingwains a mechanism to predict the

outcomes of possible actions, and to choose the action with the best

predicted outcome, make them beer decision-makers?

Resear estion 2: Can Popperian wains learn to classify data

with accuracy and speed comparable to traditional classificationmeth-

ods?

Recall from Section 7.4 that awainmaintains a set of internal models for the

range of objects that it has encountered. ese internal models need not (and

125

usually do not) map directly to human categories. Based on the resemblance

between a stimulus and its internal models, thewain chooses, from a predefined

set, the response that it predicts will lead to the greatest happiness. en how

can we get a wain to perform classification? By making the set of available

responses be classifications! (For example, one action that a wain can choose is

“assign the object to category A”, another is “assign the object to category B”,

and so on.) Using the wain as a classifier also exercises its ability to make good

decisions.

How can we know if the new brain design is an improvement over the orig-

inal design? Recall from Section 2.10 that the original wains were asked to

choose from a small set of actions rather than to classify the images of hand-

wrien numerals. erefore, it is difficult to say how accurate they would have

been at a true classification task. However, wains ate “poisonous” numerals

nearly 10% of the time, and aempted to mate with numerals approximately 4%

of the time. Not eating an “edible” numeral is not necessarily a mistake, but in

the absence of any other information we might estimate that half of the occa-

sions on which they did this were mistakes. Examination of the decisions made

by some randomly selected individualwains as recorded in the program logs in-

dicate that this is a conservative estimate; i.e., the actual rate is probably higher.

Finally, wains chose not to eat “edible” numerals 30% of the time; so it was es-

timated that if the original wains were classifying handwrien numerals, their

error rate would have been approximately 30%, as shown below.

126

15% 30%
2

of “edible” numerals not eaten when hungry

10% “poisonous” numerals eaten

4% numerals mated with

≈ 30% total estimated mistakes

If the new brain design was found to be significantly more accurate than

this, it was considered an improvement over the original design. Furthermore,

the accuracy of the new brain was compared against conventional classification

techniques. Experiments were designed to test the accuracy of a single wain

as a classifier in two different domains, image and audio data. Further classifi-

cation experiments involving populations of wains were planned; however, as

will be shown, individual wains (in the new implementation) were quite accu-

rate. us, the population experiments were not needed. However, experiments

involving populations of wains are discussed in Chapter 9.

8.1 Experimental set-up

Figure 8.1 shows the architecture for these experiments. e creatur-image-wains

package customises the genericwain implementation to interact with grey-scale

images. e creatur-audio-wains package customises them to work with au-

dio samples. e packages exp-image-id-wains and exp-audio-id-wains

drive the experiments.

Although these experiments use an individual wain rather than a popula-

tion, the wain is trained using the same mechanism that allows wains to learn

from one another.

127

"four"

chosen response chosen response

creatur

creatur-image-wains

creatur-wains

exp-image-id-wains

creatur-audio-wains

creatur

creatur-wains

exp-audio-id-wains

Figure 8.1: Architecture for classifying images and audio samples.

8.1.1 Classifying images

Images from theMNIST database (described in Section 2.13.1) were usedwithout

modification. e images were presented to the agent as a sequence of integers.

Each element of the sequence was a number from 0 to 255, indicating the inten-

sity of the pixel. e agent was not given any information about the geometry

of the image. For example, it did not know that in a 28x28 image, the 29th pixel

is immediately below the first pixel.

e brain was configured to use the MAD as a measure of difference be-

tween an input image and the classifier models. is is calculated by taking the

absolute difference between each pair of corresponding pixels, and then taking

the mean to obtain a number in the interval [0, 1], where 0 indicates the im-

ages are identical and 1 indicates that they are maximally dissimilar. All the

images in the MNIST database have the same size, viewing direction (normal to

the plane of the image, from above), and comparable intensity, so the MAD is

an appropriate difference metric.

To evaluate the performance of the brain at handwriting recognition, it was

128

comparedwith a traditional classifier. Other classification techniques can achieve

beer accuracy at handwriting recognition than the SOM, for example, sup-

port vector machines [154] and traditional neural networks [155]. However, the

wain’s new brain design is partly based onmodified SOMs (as discussed in chap-

ter Section 7). For this reason, the SOM was used as the benchmark.

e learning functions used for the SOM and SGM were previously intro-

duced in Section 6.2. As discussed in that section, the learning function of

the SGM (see Equation 6.2) matches the learning function of the winning node

(where d = 0) in the SOM (see Equation 6.1). is permits a fairer comparison

of the SOM and the SGM.

Table 8.1 shows the configuration of the two classifiers. e values r0 and

rf were chosen so that the learning rate would start high and be near zero by

the end of training. e value w0 was chosen so that the width would be ap-

proximately one-tenth of the width and length of the grid. (Since there are ten

numerals, this would minimise the risk that a model would simultaneously be

trained to more than one numeral.) e value wf was chosen so that the neigh-

bourhood width would be near zero by the end of training. e value of tf is

the number of training images. To determine the difference threshold, a range

of values was tested near the mean difference between images of the same nu-

meral; the one that resulted in the best accuracy was chosen.

8.1.2 Classifying audio samples

e MFCC feature vectors (discussed in Section 2.11) were extracted from the

samples in the TI46 corpus (introduced in Section 2.13.2) by Flynn [156] using

129

Table 8.1: Configuration for working with MNIST images

variable SOM brain
final node count 1024 956

grid type rectangular unconnected nodes
classifier r0 1 1
classifier rf 1×10−15 1×10−15

classifier w0 3 not applicable
classifier wf 1×10−7 not applicable
classifier tf 60000 60000

classifier threshold not applicable 0.12
predictor r0 not applicable 1×10−9

predictor rf not applicable 1×10−10

predictor tf 60000 60000
predictor threshold not applicable 0.1

the HCopy tool provided as part of the Hidden Markov Model Toolkit (HTK)

[120]. Each frame (feature vector) has 13 static coefficients, 13 velocity coeffi-

cients (first derivatives), and 13 acceleration coefficients (second derivatives) for

a total of 39 coefficients. First order pre-emphasis was applied using a coeffi-

cient of 0.97. ere were 23 filterbank channels (which show how much energy

exists in each frequency region), and 22 cepstral liering (inverse filtering) co-

efficients. (Liering is filtering performed on an inverse Fourier transform of a

signal.) e frame rate used was 10 ms with a 25ms Hamming window (a mathe-

matical function). ese configuration parameters were selected by Flynn [156]

to maximise the accuracy with which the Hidden Markov Model (HMM) iden-

tified the end-pointed samples. e feature vectors for each audio sample were

concatenated, in time order, and presented to the brain as a sequence of double-

precision floats.

e brain was configured to use the square of the Euclidean distance as a

130

measure of difference between an input sample and the classifier models (e

Euclidean distance is a common distance metric for numeric vectors.). e

length of samples differs, so the resulting number of vectors in each sample

differs as well. However, brains require that all input paerns have the same

length. erefore, the agent was configured to “stretch” or “compress” the sam-

ples as needed so they all have the same number of vectors. Stretching is achieved

by duplicating vectors; as illustrated in Figure 8.2. e duplications were dis-

tributed as evenly throughout the paern as possible.

Table 8.2: Examples of stretching, illustrated using a character string

original desired resulting
paern length paern

9 abcdefghi
10 abcdeefghi

abcdefghi 11 abcddefgghi
12 abccdeefgghi
13 abbcddeffghhi
14 abbccddeffghhi

e algorithm for compressing samples is straightforward. First, calculate

the differences between each consecutive pair of vectors. Second, find the vector

with the smallest change from the previous one, and drop it. ese two steps

are repeated until the sample is of the desired length.

Table 8.3 shows the configuration of the brain. e values r0 and rf were

chosen so that the learning rate would start high and be near zero by the end

of training. e values w0 and wf , and the number of vectors, were determined

empirically. e value of tf is the number of training images. To determine

the difference threshold, a range of values was tested near the mean difference

131

between samples of the same numeral; the one that resulted in the best HMM

accuracy was chosen.

Table 8.3: Configuration of brain for working with audio samples.

variable as-is samples end-pointed samples
classifier r0 0.1 0.1
classifier rf 0.001 0.001
classifier tf 1594 1594

difference threshold 0.00018 0.00018
predictor r0 0.1 0.1
predictor rf 0.001 0.001
predictor tf 1594 1594
num. vectors 159 154

As discussed in Section 2.11, the HMM is widely used for ASR, so this was a

logical choice as a benchmark to compare the wain’s performance against. e

HMM-based classifier was implemented by Flynn [156] using the HTK Speech

Recognition Toolkit [120]. e classifier uses ten whole word HMMs (one for

each numeral), each ofwhich has three states, with each state having threeGaus-

sian mixtures.

End-pointing is the process of removing silence from the beginning and end

of an audio sample, in order to simplify the classification task. e short-term

energy for each frame is calculated as the sum of the absolute values of the sam-

ple amplitudes in the frame. End-pointing is performed by determining whether

or not the short-term energy of successive frames is above a defined threshold

(to determine the start of the uerance) or below a defined threshold (to deter-

mine the end of the uerance). For example, to get the start point, look for three

consecutive frames with energy exceeding the threshold; the first frame of the

132

three is assumed to be the start of the uerance.

For working with non-endpointed samples, the classifier developed by Flynn

[156] uses two additional models to represent pauses in speech, “sil” and “sp”.

e “sil” model has three states and each state has six mixtures. e “sp” model

has a single state.

8.1.3 Training and testing

e general procedure for working with either images or audio samples is the

same. In both cases, the training data set and the test data set are distinct; the

standard training and test sets were used for both the MNIST and TI46 data.

First, the training paerns were presented in random order to the agent, along

with the correct identification. is was done using imprinting, as described at

the end of Section 7.4.

Next, the test paerns were presented to the agent, again in random order.

As each paern was presented, the agent responded with an identification. For

a fair comparison with the SOM or HMM, it was necessary to prevent learning

during the testing phase. To achieve this, aer each response from the wain,

it was restored to the state it had at the end of the training (imprinting) phase.

ewain’s condition and happiness never actually change, and it is never given

an opportunity to reflect on the outcome of its decisions. us, it continues to

expect an increase in happiness, and to take that into account when making

decisions.

133

8.2 Results and interpretation

Table 8.4 compares the image classification performance of the brain with that of

the SOM.e accuracy of both methods is comparable. Furthermore, the overall

error rate of the new brain design is 15%, significantly beer than the estimated

30% for the original design. Training and testing the brain required less than half

the time of the SOM. Both the SOM and the brain were implemented in the same

language (Haskell). e reduction in processing time occurs primarily because

the SGM only updates one model during training, while the SOM updates the

models in the neighbourhood of the winning node.

Table 8.4: Comparison of image classification results.

classifier SOM brain
no. models 1024 941
numeral accuracy

0 0.952 0.9408
1 0.970 0.9736
2 0.837 0.9109
3 0.835 0.8634
4 0.725 0.6609
5 0.739 0.8341
6 0.967 0.9415
7 0.873 0.7772
8 0.753 0.7956
9 0.834 0.7929
all 0.853 0.8508
time 6273s 2514s

Table 8.5 compares the audio classification performance of the brain with

that of the HMM. e accuracy of both methods is comparable, however, the

brain is significantly slower. e difference in speed may be an implementation

134

artefact. For example, the HTK is implemented in C and, since it has been in

use since 1989, has likely been tuned for greater performance, while the wain

was wrien in Haskell, has not been tuned, and is not parallel. e HTK is

specialised for a single purpose (running the HMM), while the wain is designed

to handle a variety of data mining and decision-making tasks; this may account

for much of the difference in speed. e brain was slightly more accurate when

working with the as-is data than with the end-pointed data. e compression

algorithm has the side-effect of removing some of the silence from the beginning

and end of the sample, thus an extra end-pointing step is not required.

Table 8.5: Comparison of audio classification results.

data type as-is end-pointed
classifier HMM brain HMM brain
word accuracy
“zero” 1.0000 1.0000 1.0000 0.9840
“one” 1.0000 0.9882 1.0000 0.9922
“two” 1.0000 1.0000 1.0000 1.0000
“three” 1.0000 0.9881 1.0000 0.9961
“four” 1.0000 1.0000 1.0000 0.9961
“five” 1.0000 1.0000 1.0000 0.9961
“six” 0.9961 0.9961 1.0000 1.0000

“seven” 1.0000 0.9922 1.0000 0.9961
“eight” 1.0000 1.0000 1.0000 0.9883
“nine” 0.9881 0.9763 1.0000 0.9802
all 0.9984 0.9941 1.0000 0.9929

time <1m 14m <1m 12m

135

8.3 Summary

Awainwith the new brain design was applied to two classification tasks: hand-

wrien numeral recognition and spoken numeral recognition. In the experi-

ment with handwrien numerals, the overall error rate of the new brain design

was significantly beer than for earlier experiments with the original design.

us, the answer to research question 1 is that giving wains a mechanism to

predict the outcomes of possible actions, and to choose the action with the best

predicted outcome, does indeed made them beer decision-makers.

Whenworking with both handwrien and spoken numerals, the accuracy of

the wains was comparable to more traditional classifiers. ese results suggest

that wains could be useful as a general-purpose classifier, applied to a variety

of domains. In the experiment with handwrien numerals, the wain was faster

than the SOM. However, thewainwas much slower than the HMM at recognis-

ing spoken numerals. us, the answer to research question 2 is that Popperian

wains can learn to classify data with accuracy comparable to traditional clas-

sification methods. However, whether or not the speed of the wains will be

comparable with traditional methods depends on the type of data involved and

the methods available for that domain.

Why should anyone be interested in a new classifier that is no more ac-

curate than traditional classifiers, and for audio, is significantly slower? One

advantage is that the new brain design is not just a classifier; it also makes de-

cisions by choosing the action that leads to the best predicted outcome. In the

experiments described in this chapter, the only available actions were to choose

a classification; however, other types of actions could also be performed. An-

136

other advantage to the new design is its generality; it could be used in domains

where custom classifiers have not yet been developed.

As this is a new approach to paern recognition and decision-making, there

is scope for improvement. Accuracy might be improved by choosing more so-

phisticated distance metrics. For images, the MAD could be replaced with a

metric that takes into account a pixel’s neighbours. is might allow it to cope

beer with writing that is heavily slanted, or is thinner or thicker than typical

writing. For audio samples, a variable frame rate analysis such as that suggested

by Cerf and Compernolle [157] could be used. e run-time of the soware is

dominated by the comparisons between models, so performance could also be

improved by choosing a different distance metric.

Although a singlewainwas used in these experiments,wainswere designed

to be used in a population. e configuration parameters are genetic, so it is

possible to have a population of wains with varying configurations. Awarding

energy for more accurate classifications would encourage evolution to find a

range of suitable configurations. wains have the ability to teach their young,

as well as other adults, so each generation can augment the species’ knowledge.

A population of wains with slightly different configurations, and different life

experiences, could give independent opinions on a classification.

e code and results for the experiments presented in this chapter are open

access1

1See http://dx.doi.org/10.5281/zenodo.46981 (exp-image-id-wains),
http://dx.doi.org/10.5281/zenodo.46980 (exp-audio-id-wains), http://dx.doi.
org/10.5281/zenodo.46989 (creatur-image-wains), http://dx.doi.org/10.5281/
zenodo.46992 (creatur-audio-wains), http://dx.doi.org/10.5281/zenodo.46987
(creatur-wains), http://dx.doi.org/10.5281/zenodo.46994 (creatur), and
http://dx.doi.org/10.5281/zenodo.45039 (som).

137

Chapter 9

Forecasting with wains

In Chapter 8, it was shown thatwains can be used for one datamining task (clas-

sification). e next stepwas to apply their powers of prediction to a second data

mining task: forecasting. Experiments were designed involving univariate and

multivariate time series data in two different domains, ISP traffic and weather.

ese experiments will answer the third research question.

Resear estion 3: Can Popperian wains learn to forecast fu-

ture values in a data stream, with accuracy and speed comparable

to traditional forecasting methods?

9.1 Experimental set-up

Figure 9.1 shows the architecture used for these experiments. e creatur-

uivector-wains package customises the generic wain implementation to in-

teract with numeric vectors, where each vector element is in the interval [0, 1].

e package exp-uivector-prediction-wains drives the experiments.

138

creatur

creatur-uivector-wains

creatur-wains

exp-uivector-prediction-wains

Figure 9.1: Architecture for predicting stream data.

9.1.1 Predicting ISP traffic

e values in the ISP traffic data (discussed in Section 2.13.3) were scaled to lie in

the interval [0, 1]. ere were nomissing values to handle. is experiment used

unsupervised learning (i.e., there was no training period.) At each time step, a

vector containing the current value and the delta from the previous value (set to

zero for the first time step) was presented to eachwain in the population. Wains

were then asked to predict the next value. No information about the time of day

was provided.

A metabolism tax was deducted from each wain according to Equation 9.1,

emetabolism = cmetabolism + fmetabolism nc (9.1)

where cmetabolism and fmetabolism are configurable constants for the experiment,

and nc is the wain’s current number of classifier models. Children do not pay a

metabolism tax until they are mature. Instead, the carer pays a fraction of the

child’s metabolism tax according to Equation 9.2

echildmetabolism = fchild emetabolism (9.2)

where fchild is a configurable constant for the experiment, and emetabolism is the

139

metabolism tax that the child would pay if it were an adult, as given by Equa-

tion 9.1.

Beginning with the second round, wains were given an energy reward for

their predictions according to Equation 9.3,

ep = [fprediction(1− |xactual − xpredicted|)]kprediction (9.3)

where fprediction and kprediction are configurable constants for the experiment,

xpredicted is the prediction (for the current round) that the wain made in the

previous round, and xactual is the actual value for the current round.

e experiment used the directed mating approach described in Section 5.6;

the frequency of flirting opportunities is fflirt.

Table 9.1 shows the configuration parameters for this experiment. Prelimi-

nary trials (for this and other data mining experiments) showed that an average

metabolic cost of approximately 0.1 per wain per turn is typically high enough

to drive rapid learning, but not so high that the first generation dies before it

has an opportunity to learn the task. is should be balanced with a maximum

reward of 0.1 perwain per turn, so that successfulwains can live long lives, but

must remain competitive. e values of fprediction, cmetabolism, fmetabolism and

fchild were chosen to satisfy this rule of thumb. (Appendix B discusses the need

for a heuristic approach to configuration, and outlines one approach.) e value

of fflirt was chosen to approximately balance the birth and death rates. e ini-

tial population size has been found empirically to provide sufficient diversity in

the gene pool. e maximum lifetime was chosen to ensure that a wain could

live long enough to rear several children.

140

Table 9.1: Configuration for predicting ISP traffic.

variable value
fprediction 0.1
kprediction 16
cmetabolism -0.1
fmetabolism -0.0001

fchild 0.1
fflirt 0.1

initialPopSize 100
maximum lifetime 2000

e genetic make-up of the initial population is shown in Table 9.2. ese

seingswere chosen by following the heuristic approach presented inAppendix B.

A set of traditional forecasting techniques was chosen for comparison. e

statistical programming language R was used to run the selected techniques.

e first, labelled “naive”, simply used the current value as the estimate for the

next value. Next, Simple Moving Average (SMA) was used. SMA calculates

the arithmetic mean over the most recent n observations, where n is called the

window width. Weighted Moving Average (WMA), which calculates a weighted

average of the most recent n observations using a linear weighting, was also

used. Both SMA and WMA were calculated using an assortment of window

widths.

e next technique used was Auto-Regressive Integrated Moving Average

(ARIMA), which predicts future values as a weighted sum of one or more recent

values, plus a weighted sum of one ormore recent values of the errors. (Formore

information about ARIMA, see Coghlan [158]). e R function auto.arima

was used to determine the parameters; it recommended a non-seasonal model,

141

Table 9.2: Gene pool of initial population for predicting ISP traffic.

variable value
devotion random value in [0.0, 0.3]

maturityRange random value in [50,300]
∆p random value in [0.001, 0.1]
∆b not used

depth random value in [1, 3]
strictness random value in [2, 50]

imprint outcomes four random values in [0.1, 1]
reinforcement deltas four random values in [0.001, 0.1]
classifier max size random value in [10, 50]

classifier r0 random value in [0.1, 1]
classifier rf random value in [0.0001, 0.001]
classifier tf random value in [1000,5000]

classifier threshold random value in [0.01, 0.05]
predictor max size random value in [10, 100]

predictor r0 random value in [0.1, 0.3]
predictor rf random value in [0.00001, 0.001]
predictor tf random value in [1000,5000]

predictor threshold random value in [0.05, 0.2]

142

ARIMA(0,0,5). In this notation, p is the order (number of time lags) of the

autoregressive model, d is the degree of differencing, and q is the order of the

moving-average model. For each prediction, a new ARIMA model was created

using the previous data values.

Finally, Holt-Winters with exponential smoothing was used. is technique

models the level of a variable, its trend, and seasonal effects. (For more infor-

mation about Holt-Winters, see Coghlan [158]). “Seasons” of one hour and one

day were tried, as well as a non-seasonal model.

9.1.2 Predicting weather

e NYC weather data (discussed in Section 2.13.4 included four non-numeric

fields, date, events, city and season, which required special consideration. e

date field was not likely to be relevant to predicting the weather, except insofar

as it would indicate the season, so it was discarded. (e records are in date

order, which provided a means to detect trends over time.) e city field was

identical for all records, and therefore not useful, so it was also discarded.

e events field might have been useful to the wains, and a numeric coding

scheme could have been used. However, this would require special handling

when measuring the difference between two models (what should the numeric

difference between “Fog” and “Tornado” be?), and when adjusting a model to

make it more similar to an input paern (if the input paern has “Snow”, the

model has “Rain”, and the learning rate is currently 0.15, what should the new

value of the field be?). For convenience, the event field was discarded.

e season field suffers from the same difficulty as the events field, so it was

143

replaced with a field for ordinal “day of year” [0, 366], which might allowwains

to observe seasonal paerns. Additional fields were discarded because of miss-

ing values: maximum, mean, and minimum visibility, gust speed, precipitation

and cloud cover. is le 16 numeric fields, which were then scaled to lie in the

interval [0, 1]. Finally, two of the 24,560 records were also discarded because

they contained null values for one or more fields, leaving 24,558.

e remaining fields were expected to contain more than enough paerns

and correlations for the test. e focus of this experiment was to see how well

wains could learn a complex data set in situations where lile prior domain

knowledge (such as the existence of weather seasons) exists. e NYC weather

data is merely being used as an example of complex data set to allow the compar-

ison of different classification systems; the intention is not to replace existing

weather forecasting systems. All classification systems tested were presented

with the same data; dropping some fields might have some impact on absolute

accuracy, but should not affect the accuracy of one classification system relative

to another.

A metabolism tax was deducted from each wains according to Equation 9.1

and Equation 9.2. In each round aer the first, wains were given an energy

reward for their predictions according to Equation 9.3. e experiment used the

directed mating approach described in Section 5.6.

Table 9.3 shows the configuration parameters for this experiment. e val-

ues of fprediction, cmetabolism, fmetabolism and fchild were chosen to satisfy the 0.1

metabolism cost and reward rule of thumb introduced in Section 9.1.1. e value

of fflirt was chosen to approximately balance the birth and death rates. e ini-

tial population size has been found empirically to provide sufficient diversity in

144

the gene pool. e maximum lifetime was chosen to ensure that a wain could

live long enough to rear several children.

Table 9.3: Configuration for predicting next day’s high temperature.

variable value
fprediction 0.1
kprediction 16
cmetabolism -0.09
fmetabolism -0.0001

fchild 0.1
fflirt 0.1

initialPopSize 100
maximum lifetime 5000

e genetic make-up of the initial population is shown in Table 9.4. ese

seingswere chosen by following the heuristic approach presented inAppendix B.

A set of traditional forecasting techniques, using logical but not necessarily

optimal configuration parameters, was chosen for comparison. Again, the sta-

tistical programming language R was used to run the selected techniques. e

“naive” technique simply used the current value as the estimate for the next

value. e next techniques were SMA and WMA, each with an assortment of

window widths.

As the weather data is multivariate, ARIMA and Holt-Winters could not be

used. Instead, Vector Auto-Regression (VAR) was used. is technique models

linear interdependencies among multiple time series. (For more information

about VAR, see Pfaff and Stigler [159]). For each prediction, a new VAR model

was created using the previous data values.

145

Table 9.4: Gene pool of initial population for predicting next day’s high temper-
ature.

variable value
devotion random value in [0.0, 0.3]

maturityRange random value in [100,300]
∆p random value in [0.001, 0.1]
∆b not used

depth random value in [1, 5]
strictness random value in [2, 200]

imprint outcomes four random values in [0.1, 1]
reinforcement deltas four random values in [0.001, 0.1]
classifier max size random value in [10, 50]

classifier r0 random value in [0.1, 1]
classifier rf random value in [0.0001, 0.001]
classifier tf random value in [1000,5000]

classifier threshold random value in [0.01, 0.05]
predictor max size random value in [100, 1000]

predictor r0 random value in [0.1, 0.3]
predictor rf random value in [0.0001, 0.001]
predictor tf random value in [1000, 5000]

predictor threshold random value in [0.1, 0.16]

146

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

0.05

0.10

0.15

0.20

0.25

50
0

10
00

15
00

20
00

n (window size)

m
ea

n
er

ro
r

Figure 9.2: SMA forecasting of ISP traffic with different window widths. A log-
log scale is used to make it easier to identify the point where the minimum error
occurs.

9.2 Results and interpretation

As shown in Figure 9.2 and Figure 9.3, the best results were obtained with win-

dow widths set to 1 (a single five-minute interval), which is identical to the

“naive” approach.

Of the traditional forecasting techniques tried, the non-seasonal Holt-Winters

model gave the best results, as shown in Figure 9.41. e wains were able

to match Holt-Winters aer they had seen approximately 2000 values. Since

SMA(n=1) and WMA(n=1) are identical to the “naive” approach, SMA(n=12)
1Cortez et al. [136] experimented with forecasting the same ISP traffic data set. It is difficult

to compare the results described above with theirs, because they used 2/3 of the A5M data to
train the models and the remaining 1/3 to evaluate their accuracy. ey tested an extensive
range of different ARIMA models, and found that the X-12-ARIMA package gave beer results
than Holt-Winters. An Neural Network Ensemble (NNE) with 5 different networks was also
used, where the average of the individual network predictions became the NNE prediction. e
NNE gave slightly beer accuracy than ARIMA. [136]

147

●
●

●
●

●
●

●
●

●
●
●

●

●

●
●

●

0.05

0.10

0.15

0.20

50
0

10
00

15
00

20
00

n (window size)

m
ea

n
er

ro
r

Figure 9.3: WMA forecasting ISP trafficwith different windowwidths. A log-log
scale is used to make it easier to identify the point where the minimum error
occurs.

WMA(n=12), a window width of one hour, are included in Figure 9.4.

e 2000-value delay is believed to be due to the time needed for early gener-

ations to learn the basic paernicity of the data and pass it on to their offspring.

e first generation gave birth in the first few rounds, so they had not acquired

much knowledge to pass onto the second generation; effectively, the first and

second generations were learning the data paerns from scratch. e third gen-

eration was the first to be able to build upon the knowledge of their ancestors,

and they did not dominate the population until about time t =1000 (i.e., when

1000 values had been presented). ese wains could then complete the task of

learning the more basic paerns in the data. By t =2000, the population would

be dominated by fourth and fih-generationwains, who knew the basic paerns

by the time they were reared.

148

0.00

0.01

0.02

0.03

0.04

0.05

5000 10000
time

er
ro

r

method
wains
naive
SMA(n=12)

WMA(n=12)
ARIMA
Holt−Winters

Figure 9.4: Error in ISP traffic prediction.

e naive, SMA, WMA, and ARIMA implementations required less than 10

minutes to run, Holt-Winters took approximately four hours, and the wains

took approximately 20 hours. is means thatwainswere able to generate each

prediction in under 5 seconds, on average. Considering that the ISP traffic was

measured at 5-minute intervals,wainswould likely be fast enough for real-time

prediction of ISP traffic. e slower speed of wains may be due to differences

in the implementation rather than differences in the algorithm. e R libraries

used were coded in C and have likely been tuned for greater performance, while

the wain was wrien in Haskell, has not been tuned, and is not parallel.

For the weather data, as shown in Figure 9.5 and Figure 9.6, SMA and WMA

gave the best results with window width set to one, which is identical to the

“naive” approach.

149

●

●
● ● ●

●

●

●

●
●

●

●

0.04

0.06

0.08

0.10

0.12

10
0

20
0

30
0

n (window size)

m
ea

n
er

ro
r

Figure 9.5: SMA forecasting of next day’s high temperature with different win-
dow widths. A log-log scale is used to make it easier to identify the point where
the minimum error occurs.

● ● ● ● ●

●

●

●

●

●

● ●

0.04

0.06

0.08

0.10

10
0

20
0

30
0

n (window size)

m
ea

n
er

ro
r

Figure 9.6: WMA forecasting of next day’s high temperature with different win-
dow widths. A log-log scale is used to make it easier to identify the point where
the minimum error occurs.

150

0.00

0.01

0.02

0.03

0.04

0.05

5000 10000 15000 20000
time

er
ro

r

method
wains
naive
SMA(n=7)

WMA(n=7)
VAR(p=1)
VAR(p=2)

Figure 9.7: Error in next day’s high temperature prediction.

Of the traditional forecasting techniques tried, VAR(p=2) gave the best re-

sults by far, as shown in Figure 9.7. Since SMA(n=1) and WMA(n=1) are iden-

tical to the “naive” approach, SMA(n=7) and WMA(n=7) (a window width of

one week) are included in Figure 9.7. e wains were able to match or exceed

the accuracy of most of the other techniques aer viewing approximately 5000

records. (Since the weather data is multivariate, it may have taken more gen-

erations for the population to learn the basic paerns in the data.) However,

the wains were not able to match the accuracy of VAR(p=2). e error rate for

wains shows a downward trend; it is possible that the accuracy gap between

them and VAR(p=2) would have narrowed if there had been more data. It is also

possible that a larger population would be more accurate.

e naive, SMA, and WMA implementations required less than 15 minutes

151

to run, both VAR runs took approximately six hours, and thewains took approx-

imately two days. is means that wains were able to generate each prediction

in just over 7 seconds, on average. e weather was measured at daily intervals,

so wains would likely be fast enough for real-time prediction in this scenario.

Again, the slower speed of wains may be due to differences in the implemen-

tation rather than differences in the algorithm. e R libraries used were coded

in C and have likely been tuned for greater performance, while the wain was

wrien in Haskell, has not been tuned, and is not parallel.

9.3 Summary

Populations of wainswere exposed to a stream of time series data, and tasked to

predict future values. e results were compared with traditional mathematical

forecasting algorithms (using logical but not necessarily optional configuration

parameters). When working with univariate ISP traffic data, the wains quickly

exceeded or matched the accuracy of the traditional algorithms. With the multi-

variate weather data,wains took longer to achieve accuracy comparable to most

of the traditional algorithms (possibly due to the greater complexity of multi-

variate data), and they were unable to match the accuracy of VAR(p=2). Wains

showed a continuing trend of increasing accuracy over time; it is possible that

the accuracy gap between them and VAR(p=2) would have narrowed if there

had been more data. It is also possible that a larger population would be more

accurate.

ewainswere much slower than traditional forecasting methods, but they

were fast enough to keep up with a daily real-time data stream. e traditional

152

algorithms are each fine-tuned for a single purpose (prediction), while thewain

is designed to handle a variety of data mining and decision-making tasks; this

may account for much of the difference in speed.

Although wains were only asked to predict the next value in the time se-

ries, they could be asked to predict values further in the future. More research

is needed to determine how the accuracy would drop off as predictions were

made further into the future. As with the experiments in Chapter 8, these fore-

casting experiments demonstrate the decision-making ability of wains. In this

case, the only available actions were to select a prediction from a list of possible

predictions, other types of actions could be selected.

In conclusion, the answer to research question 3 is that Popperianwains can

learn to forecast future values in a data stream. eir accuracy is comparable to

that of traditional forecasting methods in some cases; however, they are likely

to be somewhat slower. If faster and equally accurate techniques are available,

could there be any advantage to using wains for forecasting? Consider that it

is sometimes difficult to know, a priori, which of the traditional techniques, and

with what configuration, will give the most accurate forecasts. It is also possible

for the paernicity of data to change so much that the technique/configuration

that works best at one point in time will not be the best choice later. Because

wains evolve, we might expect them to be able to adapt to changes in the pat-

ternicity of the data. More research is needed to discover if this is indeed the

case. Also consider that wains have the innate ability to make decisions; most

forecasting algorithms do not. Section 10.3.1 will present some ideas on how

this ability might be used.

e code and results for the experiments described in this chapter are open

153

access2

2See https://doi.org/10.5281/zenodo.212847 (exp-uivector-prediction-wains),
https://doi.org/10.5281/zenodo.212912 (creatur-uivector-wains), https:
//doi.org/10.5281/zenodo.212889 (creatur-wains) and https://doi.org/10.5281/
zenodo.212879 (creatur).

154

Chapter 10

Conclusions

10.1 Synopsis

Wains are an ALife species with artificial intelligence that live in, and subsist

on, data. For them, finding paerns in data is a survival problem. De Buitléir,

Russell, and Daly [2] showed that wains can discover paerns, make survival

decisions based upon those paerns, and adapt to changes in the paernicity of

their data environment. Could wains could be improved to make them useful

data mining tools? Answering this question was the objective of this research

project.

In order for wains to be useful data miners, they needed beer decision-

making skills. e approach chosen was to give wains the ability to predict the

outcome of their actions, making them Popperian creatures in Denne’s Tower

of Generate-and-Test.

In preparation for the experiments, several improvements were made to the

Créatúr framework, with the goal of making it easier to use, both by the au-

155

thor and future researchers. e code was refactored into re-usable packages to

make it easier to create new agent types and experiments. Agent caching was

added to reduce I/O time. A mechanism was provided for the user to define

conditions under which an experiment should halt, in order to allow problems

to be identified more quickly, and to avoid wasting processing resources on ex-

periments which are not progressing satisfactorily. An automatic population

“balancing” feature was added, which eliminates the need to repeatedly adjust

the experiment configuration to make the environment harsher as agents learn

the assigned task.

Support for artificial genetics was also added to the Créatúr framework.

Arbitrary user-defined data types can now be automatically encoded, decoded,

recombined, and expressed. is reduces the amount of code that must be writ-

ten by the user, and makes it easy to add new genetic traits to an agent. e

framework now supports both sexual and asexual reproduction, with a flexi-

ble Domain-Specific Embedded Language (DSEL) to control recombination and

mutation.

A number of improvements were made to thewain implementation to make

them more suitable for a variety of tasks. e code was re-factored into a set of

reusable packages which communicate throughAPIs. ismakes it easier to add

support for new data types, define new tasks, extend the capabilities of wains,

and create new experiments with custom reward systems. e new implemen-

tation takes advantage of the improved Créatúr framework for reproduction.

e new wains can perform multiple kinds of tasks (including classification,

forecasting, and decision-making), and work with a variety of data types and

formats (including grey-scale images, audio samples, and numeric vectors).

156

e most important improvement to wains was the redesign of the brain.

e new brain is based upon the SGM, a modified SOM that was adapted for use

in intelligent data mining ALife agents. By sacrificing topology-preservation,

the SGM requires fewer calculations, making it faster than a SOM of compara-

ble size. When tested at identifying handwrien numerals, the SGM and SOM

were found to be equally accurate. e SGM achieves a higher accuracy more

quickly, which could allow an agent to make good survival decisions with less

training. Model stability (the ability of a model to continue to match paerns it

was created in response to, while adjusting to match new paerns) was higher

in the SGM. ere were fewer wasted models (models that will not be used to

classify future paerns), reducing unnecessary computation. e SGM could be

a useful component for implementing intelligent agents, and for other clustering

or classification applications.

e new brain design has three components: a classifier to build a set of

models representing paerns in the environment, a muser to generate possible

responses, and a predictor to predict the outcome of actions. is allows the

wain to base its actions on what scenario it thinks it is facing, how confident

it is, the predicted outcome of the action assuming the wain’s assessment is

correct, and the predicted outcome based on alternative assessments. e new

design also allowswains to be taught behaviour paerns by their parents, other

wains, or through a formal training session run by a human experimenter.

By allowing a wain to generate hypotheses about the scenario it is facing,

consider the actions available to it, and predict the outcome of each action for

each hypothesis, the new brain design makes them Popperian creatures. is

promotion to a new level in the tower represents an increase in cognitive power.

157

A series of experiments tested the newwains on their ability to classify data

and predict future values, using complex data from a variety of domains, and

comparing their accuracy against traditional data mining techniques. First, a

singlewainwas applied to two classification tasks: handwrien numeral recog-

nition and spoken numeral recognition. In both cases, the wain’s accuracy was

comparable to more traditional classifiers. ese results suggest that wains

could be useful as a general-purpose classifier, applied to a variety of domains.

Next, populations of wains were exposed to a stream of time series data,

and tasked to predict future values. When working with univariate ISP traffic

data, the wains quickly exceeded or matched the accuracy of the traditional

algorithms. With the multivariate weather data, wains took longer to achieve

accuracy comparable to most of the traditional algorithms (possibly due to the

greater complexity of multivariate data), and they were unable to match the

accuracy of the best algorithm tested. However, wains showed a continuing

trend of increasing accuracy over time, so it is possible that the accuracy gap

between them and the best algorithm would have narrowed if there had been

more data. It is also possible that a larger population would be more accurate.

ewainswere much slower than traditional forecasting methods, but they

were fast enough to keep up with a daily real-time data stream. e traditional

algorithms are each fine-tuned for a single purpose (prediction), while thewain

is designed to handle a variety of data mining and decision-making tasks; this

may account for much of the difference in speed.

It is sometimes difficult to know, a priori, which of the traditional techniques,

and with what configuration, will give the most accurate forecasts for a given

data set. Furthermore, the paernicity of data may change so much that the

158

technique and configuration that works best at one point in time will not be the

best choice later. Because wains evolve, we might expect them to be able to

adapt to changes in the paernicity of the data.

10.2 Conclusions

It is now possible to answer all of the research questions raised in Chapter 1.

Researestion 1: Will givingwains a mechanism to predict the

outcomes of possible actions, and to choose the action with the best

predicted outcome, make them beer decision-makers?

In the experiment with handwrien numerals, the overall error rate for the

new Popperianwainswas significantly beer than for earlier experiments with

the original wains. So the answer to this question is yes.

Resear estion 2: Can Popperian wains learn to classify data

with accuracy and speed comparable to traditional classificationmeth-

ods?

In the experiments with handwrien and spoken numerals, the accuracy of

Popperian wains was comparable to traditional classification methods. How-

ever, whether or not the speed of the wains will be comparable with traditional

methods depends on the type of data involved and the methods available for

that domain.

Resear estion 3: Can Popperian wains learn to forecast fu-

ture values in a data stream, with accuracy and speed comparable

to traditional forecasting methods?

159

When working with univariate ISP traffic data, the wains quickly exceeded

or matched the accuracy of the traditional algorithms. With the multivariate

weather data, wains took longer to achieve accuracy comparable to most of the

traditional algorithms (possibly due to the greater complexity of multivariate

data), and they were unable to match the accuracy of one algorithm. Wains are

generally slower than traditional methods; however, they are likely to be fast

enough for real-time forecasting.

e experiments with grey-scale images, audio samples, ISP traffic data, and

weather data indicate that wains might be used in a variety of domains. Cus-

tom data mining algorithms have been developed for some domains; suitably

tweaked, they are likely to out-perform wains. erefore, wains may be most

useful in domains where custom algorithms are not available.

Based on the literature review undertaken (see Chapter 2), this is the first

time an ALife species with Popperian-level AI has been applied to data mining.

Popperian creatures have the ability to predict the outcome of their actions;

this same ability could be used to predict future data values. For this reason,

and because of their greater cognitive power, the author believes that Popperian

ALife agents are beer suited to data mining than are Skinnerian creatures. is

is a new direction, but a promising one, as shown by the experimental results

presented in this thesis.

10.3 Future directions

is section proposes future directions for research continuing on from, or in-

spired by, this research project. Any of the directions could be pursued inde-

160

pendently of the others.

10.3.1 Making decisions and managing systems

Wains have the innate ability to make decisions; most forecasting algorithms

do not. Forecasting does not exist in a vacuum; it is done to support decisions,

which are typically made by humans. It could be possible for wains to han-

dle some of the decision-making. For example, consider a system where, if a

variable exceeds a pre-determined threshold, a quality of service agreement will

be breached. e system operator might set an alarm to be triggered when the

variable reaches some lower value, in hopes that he or she will have time to

diagnose and prevent a problem before it occurs. However, it is not obvious

what the alarm value should be. Too high, and the operator will not be able

to prevent problems from occurring. Too low, and there will be frequent “false

alarms”, which the operator will soon start to ignore.

Suppose thatwainswere introduced into such a system. ey could forecast

future values of the variable in question, consider how far over the threshold

the value is likely to be, and take into account how confident they are in their

forecasts. If a two-thirdsmajority of wains vote in favour, the operator would be

notified of a potential problem. If the operator takes action, thewains that voted

to notify the operator would be rewarded, and those that voted against might

be penalised. If the operator takes no action, then the rewards and penalties

would be reversed. e wains might, over time, sele on the appropriate value

at which the alarm should be triggered.

We can also imagine the wains observing the corrective actions that the

161

operator takes, and begin to take those actions automatically when appropriate,

or at least recommend those actions to the operator. Such a system would be

partially or fully autonomous.

10.3.2 Improved configurations

e eventual success of wains depends greatly on the genetic makeup of the

original population. Evolution cannot select for genes that are not in the gene

pool. Mutation introduces new genes, but since it is random, most of the genes

it introduces will be harmful rather than beneficial. us, mutation has a small

effect on wain success. If an experiment is poorly configured, particularly as

regards the initial gene pool, wains may not achieve optimum accuracy. ey

may even die out before they learn the task. e ideal gene pool would be large

and highly varied, but an experiment with a very large population is impractical,

it will take too long to run.

Observing how the genes evolve during the course of an experiment does

provide useful feedback. e next time the experiment is run, the gene pool can

be adjusted to include more variations of favourable genes, and fewer variations

of unfavourable genes. However, this risks stranding the population on islands

of local extrema.

It might be worthwhile to identify more extensive heuristics for configuring

experiments. One way to achieve this would be to run many experiments using

a variety of configurations to see which ones perform best. Another way would

be to run a few experiments using very large populations with very diverse gene

pools. Working with larger data sets might also help to identify these rules of

162

thumb. For example, running forecasting experiments with much longer time

series data sets might show a further increase in accuracy; the resulting gene

pool could be analysed to determine which genes are favourable. ese rules of

thumb might be applied to other domains, speeding up the learning process.

10.3.3 Smarter agents

Givingwains or other agents the ability to develop and use simple tools (such as

a simple form of language) would promote them to Gregorian creatures. e as-

sociated increase in cognitive power might make them beer data miners. For

forecasting, agents might be given traditional forecasting algorithms as tools;

the task of the agents would be to judge the reliability of the tools, and to com-

bine the predictions from the various tools into a single, unified prediction.

163

Glossary

agent In this thesis, the term “agent” refers to a program that has goals, and

makes decisions about how to achieve those goals. 15–17, 25–27, 32, 36,

37, 40–43, 52, 53, 59–62, 64, 66–69, 72, 75, 80, 82, 96–100, 103, 106, 112, 114,

115, 117, 120–122, 127, 130, 132, 155, 156, 162, 184

algorithm mining Tuning parameters in datamining algorithms to achieve suit-

able results. 35

allele One of the possible forms that a given gene may take. 31, 32, 39, 53, 61,

93

anisogamous Describes an organism which produces either egg cells or sperm

cells, which have different size and form. 30

anomaly detection e identification of portions of a data set which do not

follow typical paerns. 34

appearance e sensory data that is received by a wain when it encounters

another wain. 39, 41, 54, 90, 91

Application Programming Interface A set of data types, subroutines, and tools

for building soware and applications. 85, 86, 177

164

Artificial Intelligence euse bymachines of techniques that mimic intelligent

behaviour in humans or other animals. 4, 10, 12, 16, 18, 20–23, 25–27, 51,

52, 57, 89, 159, 177

Artificial Life Refers to systems which mimic some aspects of biological life. 4,

10–16, 23–27, 29, 31, 32, 36, 37, 39, 42, 52–54, 57, 91, 96, 113, 114, 154, 159,

177

Artificial Neural Network A computer model based on biological neural net-

works. 97, 177

asexual reproduction A method of reproduction where the genome for an in-

dividual consists of a single strand of genetic information. Crossover, cut-

and-splice, andmutation operations are performed on two parent genomes

to produce two child genomes. 30, 31

Auto-Regressive Integrated Moving Average A forecasting technique. 140, 142,

144, 146, 148, 177

Automated Spee Recognition e process of converting an acoustic signal

(spoken language) into the corresponding sequence of words. 13, 43–45,

49, 54, 131, 177

big data Data sets so large that traditional data analysis tools are either too slow

or too cumbersome to use on them. 32, 36

Binary-Reflected Gray Code A scheme that maps values to codes in a way that

guarantees that the codes for two consecutive values will differ by only

one bit. Named aer the developer, Frank Gray. 67, 177

165

carer e parent which rears a child produce by mating. 94, 138

cellular automaton A grid of cells where each cell is in one of a set of finite

states; at each time step the cells follow predefined rules for changing

states. 24

classification Assigning objects to predefined categories based on the aributes

of the objects. 16, 34, 35, 37, 40, 43, 53, 57, 58, 100, 105, 112, 124–126, 128,

131, 133, 135, 136, 156, 157

classifier In mathematics and neural networks, a machine learning program. In

wains, the component of the brain that builds a set of models representing

the types of objects that it encounters. 40, 90, 96, 97, 100, 101, 103, 105–107,

109, 117, 120, 123, 125–128, 130, 131, 135, 136, 138, 156, 157

cluster analysis Partitioning objects into a set of clusters such that objectswith-

ing a cluster have similar characteristics, and objects in different clusters

have dissimilar characteristics. 34, 35, 57, 58

condition A wain’s energy level, passion level, boredom level, and whether or

not it is currently rearing a child. 87, 88, 120, 121, 132

conjugation e mechanism where genetic material is transferred between or-

ganisms in direct contact. 82

crossover Breaking a pair of gene sequences, and swapping their tails. Some-

times the term crossover is reserved for the special case where the se-

quences are broken at corresponding locations, while the term cuing and

166

splicing is used for the more general case where the cuts may be at non-

corresponding locations, thereby ending up with two sequences of differ-

ent length. 67, 70–72, 93

Créatúr A soware framework for automating ALife experiments. 10, 14, 25,

39, 42, 45–48, 54, 55, 59–61, 64, 65, 68–70, 72, 83, 86, 154, 155, 172

cut-and-splice See crossover . 70, 71, 93

daemon A computer program that runs in the background and does not require

user interaction. 42, 86, 87

Darwinian creature An organism that can adapt to the environment through

recombination and mutation of genes. 11, 26, 27, 29, 113

data mining e process of discovering interesting and useful paerns in data.

e term “data mining” largely overlaps with KDD. 4, 11, 13–15, 22, 23,

32–37, 53, 54, 57, 58, 96, 100, 113, 124, 137, 139, 157, 159

datatype-generic programming An implementation of generic programming

for Haskell. 13, 48, 55, 64, 65, 72, 83

decider In the original wain design, the component of the brain that chooses

the wain’s next action in response to a stimulus. 40, 97

depth e number of hypotheses that a wain considers before making a deci-

sion. 120

descriptive data mining e process of modelling and understanding data. 33

167

difference threshold An SGMwill not create a newmodel unless the difference

between its input and all of its models exceeds the difference threshold.

101, 104, 128, 131

diploid In biology, a diploid organism has two sets of chromosomes in each

cell. By extension, a diploid ALife organism contains two sets of building

instructions. 30, 31, 39, 93

directed mating A mating system where wains are randomly assigned mating

opportunities, with a predetermined frequency. 92, 93, 139, 143

Domain-Specific Embedded Language ADSL that is implemented as an exten-

sion of the language in which it is implemented. 13, 46, 47, 54, 64, 68–70,

76, 77, 79–81, 83, 155, 177

Domain-Specific Language A special-purpose language tailored to meet the

needs of a limited domain. 46, 54, 177

dominance An effect where a child inherits two different versions of a gene,

and one gene is expressed while the other has no effect. 32, 61, 72, 75, 79,

93

dominant Refers to an allele which has an effect even if it is only in one of the

genetic strands inherited by the organism. 32, 39, 53, 74

egg cell e larger gamete produced by an anisogamous organism. 31

expert system An application that uses a knowledge base of human expertise

to make decisions. 22

168

feature extraction Finding features of the audio signal that are characteristic

of a particular uerance, producing representations that are more suitable

for ASR. 44

filterbank A set of frequency filters. 129

fitness function A function that indicates how close a solution is to meeting a

particular goal. 25

flirtation tax An amount of energy deducted from wains each time they flirt.

92, 93

free mating A mating system where wains decide when to mate, and with

whom. 92

functional programming A programming paradigm that treats expressions as

mathematical functions, and avoids side effects of computation. 45, 54,

181

gamete In biology, a sex cell. In Créatúr, a sequence of genes donated by one

parent. 30, 31, 63, 69

gene A unit of heredity. 14, 16, 26, 31, 32, 39, 41, 53, 61, 64–68, 72, 75–77, 79, 80,

83, 92–94, 116, 139, 144, 184

gene expression emechanism that determines the phenotype of an organism

from its genotype. 31, 92

generic programming Programming that references types to be specified later.

47, 55

169

genetically determined Refers to a trait that is specified by an agent’s genes,

can be different for each agent, is inherited by offspring, and is subject to

evolutionary pressures. 41, 88, 91, 94, 116, 120, 122

genome e set of genes for an organism. 61, 63, 64, 68, 69, 75–77, 79, 92

genotype A sequence of genes. Compare with phenotype. 31

Graphics Porcessing Unit A processor that is designed to handle graphics op-

erations. Also known as a “graphics card”. 114, 177

Gregorian creature An organism that can use tools, including “mind tools” like

words. 29, 30, 114, 162

Hamming window A mathematical function commonly used in spectral anal-

ysis. 129

haploid An organism or cell having only one sequence of genes. 30

happiness A metric that summarises a wain’s condition. Wains are motivated

to make decisions that will maximise their happiness. 88, 89, 121, 125, 132

Haskell A purely functional programming language named aer the logician

Haskell Curry. 45–47, 54, 59, 61, 64, 65, 83, 180

Hidden Markov Model A widely-used ASR technique. 45, 129, 131, 132, 134,

135, 178

Holt-Winters A forecasting technique. 142, 144, 146, 148

170

horizontal gene transfer the mechanism where genetic material is transferred

directly from one organism to another instead of vertically from parent to

offspring. 82

hypothesis e set of classifier labels proposed for the objects encountered by

a wain. 119–122

imprint outcomes e energy, boredom level, passion level, and lier size used

to create a new response model during imprinting. 122

imprinting A technique where a wain is shown one or more paerns and an

action, and concludes that taking the action in a similar situation would

optimise its condition, maximising its happiness. 94, 122

instruction-based ALife Small computer programs which can replicate, recom-

bine, mutate, and evolve. 24–26

isogamous Describes an organism which produces gametes of a single size and

form. 30

Knowledge Discovery from Data e overall process of extracting knowledge

from data. Data mining is a step in this process. 34, 178

landscape mining Exploring a data set to find the space of possible inferences

and identify interesting paerns. 34, 35, 57

learning rate Controls howmuch adjustment classifiermodels are adjusted dur-

ing the learning phase. 38, 42, 101–103, 105, 117, 128, 130, 142

liering Filtering on a cepstrum. 129

171

mating type Fertilisation can only occur between gametes of different mating

types. 30

Mean of Absolute Differences A measure of difference between two images.

102–104, 127, 136, 178

Mel-Frequency Cepstral Coefficient A type of feature vector used in ASR. 44,

85, 129, 178

metabolism tax An amount of energy deducted from wains at each CPU turn.

90, 138, 139, 143

MNIST A database of handwrien digits, prepared by Yann LeCun and Corinna

Cortes. 40, 49, 55, 102, 103, 105, 127, 132

modelling Producing a (typically simpler) representation of a data set that cap-

tures important features and relationships. 35, 57, 58

monad In functional programming, a structure that represents computations.

13, 46, 47, 54, 55, 64, 65, 75–77, 79, 80, 83

muser A component of a wain’s brain that generates possible responses to sit-

uations. 117, 120, 123, 156

mutation In ALife, randomly altering a bit in a gene sequence. 41, 64, 67, 77,

91, 93

Neural Darwinism A theory proposed by Gerald Edelman which states that

connections in the brain undergo a type of natural selection. 40

neural network See artificial neural network. 128

172

Neural Network Ensemble A technique where multiple neural networks are

trained simultaneously. 146, 178

neuron A nerve cell, or a node in an ANN. 20

new implementation e implementation of wains and Créatúr that incorpo-

rates the changes described in this thesis. 39, 40, 58, 60, 84, 88–90, 92–95,

116, 117, 119, 121, 123, 125, 126, 133, 135, 155, 158

node In mathematics, a vertex in a graph. In neural networks, another term for

an artificial neuron. 38, 101, 103, 107

operant conditioning A method of learning where actions that are rewarded

are reinforced, and likely to be repeated in future on similar occasions.

27–29, 40, 57

original implementation e version of wains and Créatúr documented in [2,

1]. 39–41, 57, 58, 60, 84, 88–90, 92–94, 96, 97, 125, 126, 133, 135, 158

p-score A value that controls how much a wain’s should rely on a hypothesis

when making a decision. 117, 119, 121

persistence In computer science, the ability for data to be preserved between

executions of a program. 42, 86

phenotype e physical characteristics of an organism. Compare with geno-

type. 31, 32

Popperian creature An organism that can evaluate possible actions and make

choices based on that evaluation. 11, 12, 14, 16, 28–30, 57, 58, 113–116,

173

121, 123, 154, 156, 159

prediction See predictive data mining. 35, 53, 57, 58, 89, 124, 137, 139, 140, 142–

144, 146, 148, 149, 151, 152, 157, 160

predictive data mining Using some variables in a data set to predict others. 33

predictor A component of a wain’s brain that maintains a model of the space

of responses selected, and their outcomes. 117, 120, 121, 123, 156

R A statistical programming language. 140, 144

recessive Refers to an allele which only has an effect if it is in both genetic

strands inherited by the organism. 32, 39, 53

regression Identifying functions which map data objects to prediction vari-

ables. 35, 57

reinforcement deltas Control the rate at which energy, boredom level, passion

level, and lier size in an existing response model is strengthened during

imprinting. 122

Self-Generating Model A modified version of the SOM. 14–17, 96, 101–107,

109, 111, 112, 116, 117, 123, 128, 133, 156, 178, 185

Self-Organising Map A technique for representing high-dimensional data in

fewer dimensions while preserving the topology of the input data. 13, 14,

16, 37, 38, 40, 42, 53, 58, 96–107, 109, 111, 112, 116, 128, 129, 132, 133, 135,

156, 178

174

sexual dimorphism e condition where organisms of the same species exhibit

differences according to whether they are male or female. 31

sexual reproduction A method of reproduction where the genome for an indi-

vidual consists of two strands of paired genetic information. Crossover,

cut-and-splice, andmutation operations are performed on two parent genomes

to produce two child genomes. 30–32, 39, 54, 62, 93

signature In the context of a classfier, a vector whose elements indicate how

similar each input paern is to each classifier model. 117

Simple Moving Average A forecasting technique. 140, 144, 146–149, 151, 178

simplified sexual reproduction In this thesis, the term “simplified sexual repro-

duction” is used for an artificial method of reproductionwhere the genome

for an individual consists of a single strand of genetic information. is

technique is not known to occur in nature, but is commonly used in ALife

applications. Crossover, cut-and-splice, and mutation operations are per-

formed on two parent genomes to produce two child genome, of which

one is oen discarded. 62

Skinnerian creature Organisms that can adapt to the environment through op-

erant conditioning. 11, 27–30, 40, 57, 113, 159

sperm cell e smaller gamete produced by an anisogamous organism. 30

stable model A classifier model that, despite adjustments, continues to be a

good representation of the stimulus it was created in response to. . Com-

pare with unstable model. 16, 98, 100, 101, 104, 105, 107, 109, 112, 116, 156,

175

175

strictness Higher values of strictness cause the brain to give less consideration

to hypotheses that are not the most likely. 119

TI46 A database of audio samples of spoken numerals. 49, 55, 132

Tower of Generate-and-Test A framework developed by Denne for ranking

brain designs. 11, 12, 15, 26, 29, 30

transduction emechanism where foreign genetic material is introduced into

a cell by a virus. 82

transformation emechanismwhere an organism incorporates naked genetic

material from its surroundings. 82

tuple An ordered list of elements. In Haskell, elements in a list must all be of

the same type, but elements in a tuple need not be. 63, 72

tweaker A component of an SGM that can measure the difference between an

input paern and each of its models, and tweak a model to more closely

match an input paern. 116

unstable model A classifier model that is adjusted so much that it is no longer

a good representation of the stimulus it was created in response to. Com-

pare with stable model. 99, 175

unsupervised learning A training method in which the desired responses (tar-

get values) for the input vectors in the training set are not known. 100,

138

176

used model A classifier model that is the winning node for at least one input

paern during testing or classification. Compare with wasted model. 100,

109, 176

Vector Auto-Regression A forecasting technique. 144, 149, 151, 178

visualisation Making insights about data understandable by humans. 35, 57

wain An artificial lifeform in the Créatúr habitat. 4, 10–15, 17, 39–43, 45, 53, 54,

56–59, 61, 82, 84–94, 96, 100, 101, 112, 113, 123–126, 128, 131, 132, 134–139,

142–144, 146–149, 151, 152, 154–162, 172, 183

wasted model A classifier model that goes unused during testing or classifica-

tion. Compare with used model. 16, 99, 100, 105, 107–109, 112, 116, 156,

176

Weighted Moving Average A forecasting technique. 140, 144, 147–149, 151,

178

window width e number of values used to calculate a moving average. 140

winning node In a SOM, the node whose weight vector is most similar to the

input paern. 38, 96, 100–104, 106, 109, 111, 128, 133

177

Acronyms

AI Artificial Intelligence. 4, 10, 12, 16, 18, 20–23, 25–27, 39, 51–53, 57, 89, 154,

159

ALife Artificial Life. 4, 10–16, 23–27, 29, 31, 32, 36, 37, 39, 42, 52–54, 57, 91, 96,

113, 114, 154, 159

ANN Artificial Neural Network. 20, 97

API Application Programming Interface. 84–86, 94, 155

ARIMA Auto-Regressive Integrated Moving Average. 140, 142, 144, 146, 148

ASR Automated Speech Recognition. 13, 43–45, 49, 54, 131

BRGC Binary-Reflected Gray Code. 67

DSEL Domain-Specific Embedded Language. 13, 46, 47, 54, 64, 68–70, 76, 77,

79–81, 83, 155

DSL Domain-Specific Language. 46, 54

GPU Graphics Porcessing Unit. 114

178

HMM Hidden Markov Model. 45, 129, 131, 132, 134, 135

ISP Internet Service Provider. 49, 55, 137, 151, 157, 159

KDD Knowledge Discovery from Data. 34

MAD Mean of Absolute Differences. 102–104, 127, 136

MFCC Mel-Frequency Cepstral Coefficient. 44, 85, 129

NNE Neural Network Ensemble. 146

SGM Self-Generating Model. 14–17, 96, 101–107, 109, 111, 112, 116, 117, 123,

128, 133, 156, 185

SMA Simple Moving Average. 140, 144, 146–149, 151

SOM Self-Organising Map. 13, 14, 16, 37, 38, 40, 42, 53, 58, 96–107, 109, 111,

112, 116, 128, 129, 132, 133, 135, 156

VAR Vector Auto-Regression. 144, 149, 151

WMA Weighted Moving Average. 140, 144, 147–149, 151

179

Bibliography

[1] Amy de Buitléir. “Evolving Paern-seeking Artificial Life with Créatúr”.

MSc esis. Athlone Institute of Technology, 2011.

[2] Amy de Buitléir, Michael Russell, and Mark Daly. “Wains: A paern-

seeking artificial life species”. In: Artificial Life 18.4 (2012), pp. 399–423.

: 10.1162/artl_a_00074.

[3] D. C. Denne. “Why the Law of Effect will not Go Away”. In: Journal

for the eory of Social Behaviour 5.2 (1975), pp. 169–188. : 1468-

5914. : 10.1111/j.1468- 5914.1975.tb00350.x. : http:

//dx.doi.org/10.1111/j.1468-5914.1975.tb00350.x.

[4] Daniel Denne. Kinds of Minds: e Origins of Consciousness. London:

Phoenix, 1997. : 0-7538-0043-8.

[5] D.C. Denne. Darwin’s Dangerous Idea: Evolution and the Meanings of

Life. Penguin UK, 1996. : 9780141949253.

[6] Shane Legg and Marcus Huer. “Universal intelligence: A definition of

machine intelligence”. In: Minds and Machines 17.4 (2007), pp. 391–444.

: http://arxiv.org/abs/0712.3329.

180

[7] R.J. Sternberg.Handbook of Intelligence. CambridgeUniversity Press, 2000.

: 9780521596480. : https://books.google.ie/books?id=

YnBGMpIMfJ0C.

[8] William J. Rapaport. Some Definitions of Artificial Intelligence. Sept. 19,

1985. : http://www.cse.buffalo.edu/~rapaport/definitions.

of.ai.html.

[9] D.Wechsler and J.D.Matarazzo.Wechsler’s Measurement and Appraisal of

Adult Intelligence. Williams & Wilkins, 1972. : 9780195022964. :

https://books.google.ie/books?id=rJJ9AAAAMAAJ.

[10] J.R. Slagle. Artificial Intelligence: e Heuristic Programming Approach.

McGraw-Hill series in systems science. McGraw-Hill, 1971. : https:

//books.google.ie/books?id=p7YlAAAAMAAJ.

[11] Warren SMcCulloch andWalter Pis. “A logical calculus of the ideas im-

manent in nervous activity”. In: e bulletin of mathematical biophysics

5.4 (1943), pp. 115–133.

[12] Donald O. Hebb. e organization of behavior: A neuropsychological the-

ory. New York: Wiley, June 15, 1949. : 0-8058-4300-0.

[13] A. Turing. “Computing machinery and intelligence”. In: Mind 59 (1950),

pp. 433–460. : http://links.jstor.org/sici?sici=0026-

4423(195010)2:59:236%3C433:CMAI%3E2.0.CO;2-5.

[14] K. Frankish and W.M. Ramsey. e Cambridge Handbook of Artificial In-

telligence. Cambridge University Press, 2014. : 9780521871426. :

https://books.google.ie/books?id=RYOYAwAAQBAJ.

181

[15] Elaine Woo. “John McCarthy dies at 84; the father of artificial intelli-

gence”. In: Los Angeles Times (Oct. 27, 2011). : http://www.latimes.

com/local/obituaries/la-me-john-mccarthy-20111027-story.

html.

[16] Will Knight. “What Marvin Minsky Still Means for AI”. In: MIT Technol-

ogy Review (Jan. 26, 2016). : https://www.technologyreview.

com/s/546116/what-marvin-minsky-still-means-for-ai/.

[17] J. McCarthy et al. A Proposal For e Dartmouth Summer Research Project

on Artificial Intelligence. 1955. : http://www-formal.stanford.

edu/jmc/history/dartmouth/dartmouth.html.

[18] Arthur L Samuel. “Some studies in machine learning using the game of

checkers”. In: IBM Journal of research and development 3.3 (1959), pp. 210–

229.

[19] Daniel G Bobrow. “Natural language input for a computer problem solv-

ing system”. In: AI memo (1964). : http : / / dspace . mit . edu /

handle/1721.1/5922.

[20] Terry Winograd. Procedures as a Representation for Data in a Computer

Program for Understanding Natural Language. Tech. rep. Mit AI technical

report 235, MIT, 1971. : http://hci.stanford.edu/winograd/

shrdlu/AITR-235.pdf.

[21] N.J. Nilsson. e est for Artificial Intelligence. Cambridge University

Press, 2009. : 9781139642828. : https://books.google.ie/

books?id=nUJdAAAAQBAJ.

182

[22] H.A. Simon. e shape of automation for men and management. Harper

& Row, 1965. : https : / / books . google . ie / books ? id = ZX -

aAAAAIAAJ.

[23] M.L. Minsky. Computation: finite and infinite machines. Prentice-Hall se-

ries in automatic computation. Prentice-Hall, 1967. : https://books.

google.ie/books?id=CURDAAAAIAAJ.

[24] H. Moravec. Mind Children: e Future of Robot and Human Intelligence.

Harvard University Press, 1988. : 9780674576186. : https://

books.google.ie/books?id=56mb7XuSx3QC.

[25] Richard M Karp. “Reducibility among combinatorial problems”. In: 50

Years of Integer Programming 1958-2008. Springer, 2010, pp. 219–241.

[26] P. Warren, J. Davies, and D. Brown. ICT Futures: Delivering Pervasive,

Real-time and Secure Services. Wiley, 2008. : 9780470758663. :

https://books.google.ie/books?id=uXMs6qStr4QC.

[27] William J. Rapaport. Definition of: expert system. 2016. : http://

www.pcmag.com/encyclopedia/term/42865/expert-system.

[28] G.S. Linoff and M.J.A. Berry. Data Mining Techniques: For Marketing,

Sales, and Customer Relationship Management. IT Pro. Wiley, 2011. :

9781118087459. : https://books.google.ie/books?id=AyQfVTDJypUC.

[29] Joab Jackson. IBMWatson Vanquishes Human Jeopardy Foes. Feb. 16, 2011.

: http://www.pcworld.com/article/219893/ibm_watson_

vanquishes_human_jeopardy_foes.html.

183

[30] Marvin Minsky. “e age of intelligent machines: thoughts about arti-

ficial intelligence”. In: KurzweilAI. net (en lıńea) hp://www. kurzweilai.

net/meme/frame. html (1990). : http://www.universelle-automation.

de/1991_Boston.pdf.

[31] Jennifer Kahn. “It’s Alive”. In: Wired (Mar. 2002). : http://www.

wired.com/wired/archive/10.03/everywhere.html.

[32] D. R. Hofstadter. Gödel, Escher, Bach: an eternal golden braid. New York:

Vintage Books, 1980. : 0-394-74502-7.

[33] C. G. Langton. “Artificial Life”. In: Artificial life: the proceedings of an

Interdisciplinary Workshop on the Synthesis and Simulation of Living Sys-

tems, held September, 1987, in Los Alamos, NewMexico. Ed. by C. G. Lang-

ton. Addison-Wesley, Redwood City, CA, 1989, pp. 1–48.

[34] LongbingCao.DataMining andMulti-agent Integration. Boston: Springer-

Verlag US, 2009. : 978-1-4419-0522-2. : http://dx.doi.org/

10.1007/978-1-4419-0522-2.

[35] Eduardo Reck Miranda. A-life for music : music and computer models of

living systems. Middleton, Wis.: A-R Editions, 2011. : 978-0-89579-

673-8. : http://www.worldcat.org/search?qt=worldcat_org_

all&q=9780895796738.

[36] Tibebe Dessalegne and JohnW. Nicklow. “Artificial Life Algorithm for

Management of Multi-reservoir River Systems”. English. In: Water Re-

sources Management 26.5 (2012), pp. 1125–1141. : 0920-4741. :

10.1007/s11269- 011- 9950- 7. : http://dx.doi.org/10.

1007/s11269-011-9950-7.

184

[37] John Von Neumann. “e general and logical theory of automata”. In:

Cerebral mechanisms in behavior 1.41 (1951), pp. 1–2. : http://old.

nbu.bg/cogs/events/2002/materials/Jeff/L1R2_automat.PDF.

[38] J.L. Schiff. Cellular Automata: A Discrete View of the World. Wiley Series

inDiscreteMathematics &Optimization.Wiley, 2011. : 9781118030639.

: https://books.google.ie/books?id=uXJC2C2sRbIC.

[39] Martin Gardner. “Mathematical Games: e fantastic combinations of

John Conway’s new solitaire game ”life””. In: Scientific American 223

(1970), pp. 120–123. : https://web.archive.org/web/20090603015231/

http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_

projekt/proj_gamelife/ConwayScientificAmerican.htm.

[40] Christopher G. Langton, ed. Artificial life: the proceedings of an Interdis-

ciplinary Workshop on the Synthesis and Simulation of Living Systems,

held September, 1987, in Los Alamos, New Mexico. Vol. VI. Santa Fé Insti-

tute studies in the sciences of complexity. Addison-Wesley, 1989. :

978-0-201-09346-9. : http : / / books . google . ie / books ? id =

lT9RAAAAMAAJ.

[41] Craig W Reynolds. “Flocks, herds and schools: A distributed behavioral

model”. In: ACM SIGGRAPH computer graphics 21.4 (1987), pp. 25–34.

: http://www.macs.hw.ac.uk/~dwcorne/Teaching/Craig%

20Reynolds%20Flocks,%20Herds,%20and%20Schools%20A%20Distributed%

20Behavioral%20Model.htm.

[42] Balázs Szigeti et al. “OpenWorm: an open-science approach to modeling

Caenorhabditis elegans”. In: Frontiers in Computational Neuroscience 8

185

(2014), p. 137. : 1662-5188. : 10.3389/fncom.2014.00137. :

http://journal.frontiersin.org/article/10.3389/fncom.

2014.00137.

[43] omas S. Ray. “An Evolutionary Approach to Synthetic Biology: Zen

and the Art of Creating Life.” In: Artificial Life 1.1-2 (1994), pp. 179–210.

: http://dblp.uni-trier.de/db/journals/alife/alife1.

html#Ray94.

[44] omas S. Ray. “An approach to the Synthesis of Life”. In: Artificial Life

II, Santa Fe Institute Studies in the Sciences of Complexity. Ed. by C. Lang-

ton, C. Taylor, J. D. Farmer, S. Rasmussen. Vol. XI. Redwood City, CA:

Addison-Wesley, 1991, pp. 371–408.

[45] Chris Adami and C. Titus Brown. “Evolutionary Learning in the 2D Arti-

ficial Life System “Avida””. In: Artificial life IV. Vol. 1194. cite arxiv:adap-

org/9405003Comment: 5 p., postscript with figures (unpackwith uufiles),

to appear in the Proc. of “Artificial Life IV”, MIT Press. MIT Press, Cam-

bridge, MA, 1994, pp. 377–381. : http://arxiv.org/abs/adap-

org/9405003.

[46] Maciej Komosinski and Szymon Ulatowski. “Framsticks-artificial life”.

In: ECML’98Demonstration and Poster Papers, Chemnitzer Informatik Berichte

(1998), pp. 7–9.

[47] Jon Klein. “Breve: a 3d environment for the simulation of decentralized

systems and artificial life”. In: Proceedings of the eighth international con-

ference on Artificial life. 2003, pp. 329–334.

186

[48] Unknown.Darwinbots (website). 2016. : http://wiki.darwinbots.

com/index.php?title=Main_Page.

[49] Tom Barbalet. “e Mind of the Noble Ape in ree Simulations”. En-

glish. In: Origins of Mind. Ed. by Liz Swan. Vol. 8. Biosemiotics. Springer

Netherlands, 2013, pp. 383–397. : 978-94-007-5418-8. : 10.1007/

978-94-007-5419-5_20. : http://dx.doi.org/10.1007/978-

94-007-5419-5_20.

[50] omas S. Barbalet. “Noble Ape’s Cognitive Simulation: From Agar to

Dreaming and Beyond”. In:Nature-Inspired Informatics for Intelligent Ap-

plications and Knowledge Discovery: Implications in Business, Science, and

Engineering. IGI Global, 2010, pp. 242–258. : 978-1-60566-705-8. :

10.4018/978-1-60566-705-8.ch010. : http://services.igi-

global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-

60566-705-8.ch010.

[51] Larry Yaeger. “Computational genetics, physiology, metabolism, neural

systems, learning, vision, and behavior or PolyWorld: Life in a new con-

text”. In: Artificial Life III, Vol. XVII of SFI Studies in the Sciences of Com-

plexity, Santa Fe Institute. Ed. by Christopher G. Langton. Los Alamos,

New Mexico: Addison-Wesley, 1993, pp. 263–298. : http://www.

beanblossom.in.us/larryy/polyworld.html.

[52] L Yaeger and Sporns. “Evolution of neural structure and complexity in

a computational ecology”. In: Proceedings of the tenth international con-

ference on simulation and synthesis of living systems. Ed. by Luis Mateus

Rocha et al. Cambridge, MA: MIT Press, 2006, pp. 330–336.

187

[53] L. Yaeger, V. Griffith, and O. Sporns. “Passive and driven trends in the

evolution of complexity”. In: Artificial Life XI: Proceedings of the Eleventh

International Conference on the Simulation and Synthesis of Living Sys-

tems. Ed. by S. Bullock et al. Cambridge, MA: MIT Press, 2008, pp. 725–

732. : http://alifexi.alife.org/papers/ALIFExi%5C_pp725-

732.pdf.

[54] Larry S. Yaeger. “How evolution guides complexity”. In: HFSP Journal

3.5 (2009), p. 328. : 19552068. : 10.2976/1.3233712. : http:

//www.tandfonline.com/doi/pdf/10.2976/1.3233712.

[55] StephenGrand andDaveCliff. “Creatures: Entertainment SowareAgents

with Artificial Life”. In: Autonomous Agents and Multi-Agent Systems 1.1

(1997), pp. 39–57.

[56] Steve Grand. Creation: Life and how to make it. London: Phoenix, 2001.

: 0-7538-1277-0.

[57] BobWinckelmans.Crierding. 2013. : http://critterding.sourceforge.

net/.

[58] Daniel C. Denne. Consciousness explained. Penguin, 1993. : 978-0-

14-012867-3. : http://www.worldcat.org/isbn/9780140128673.

[59] Yvonne Bernard et al. “Self-organisation and evolution for trust-adaptive

grid computing agents”. In: Evolution, Complexity andArtificial Life. Springer,

2014, pp. 209–224. : ftp : / / aliceford . ce . unipr . it / pub /

cagnoni/LW/Bernard.pdf.

188

[60] Nathalie Gontier. “Evolutionary Epistemology”. In: Internet Encyclopedia

of Philosophy. Accessed Wed Aug 16 17:56:48 IST 2017.

[61] Donald T. Campbell. “Blind variation and selective retentions in creative

thought as in other knowledge processes.” In: Psychological Review 67.6

(1960), pp. 380–400. : 10.1037/h0040373. : https://doi.org/

10.1037/h0040373.

[62] B.F. Skinner. Science AndHuman Behavior. Free Press, 2012. : 9781476716152.

: https://books.google.ie/books?id=QcbJInkd%5C_iMC.

[63] R.L. Gregory.Mind in Science: A History of Explanations in Psychology and

Physics. Peregrine book : psychology, philosophy. Weidenfeld & Nicol-

son, 1981. : 9780297778257. : https://books.google.ie/

books?id=K5V-AAAAMAAJ.

[64] C.J. Barnard. Animal Behaviour: Mechanism, Development, Function and

Evolution. Pearson Education, 2004. : 9780130899361. : https:

//books.google.ie/books?id=di5%5C_OFxTwf4C.

[65] L. Swan, R. Gordon, and J. Seckbach. Origin(s) of Design in Nature: A

Fresh, Interdisciplinary Look at How Design Emerges in Complex Systems,

Especially Life. Cellular Origin, Life in Extreme Habitats and Astrobi-

ology. Springer Netherlands, 2012. : 9789400741560. : https :

//books.google.ie/books?id=2jb3PL6Yn%5C_oC.

[66] S. Khurshid. Knowledge Processing Creativity and Politics: A Political e-

ory Based on the Evolutionaryeory. AuthorHouse, 2006. : 9781425907464.

: https://books.google.ie/books?id=MYhpvryxmbsC.

189

[67] Alan FT Winfield. “You really need to know what your bot (s) are think-

ing about you”. In: (2010).

[68] J. Pi. e Computer Aer Me: Awareness and Self-Awareness in Auto-

nomic Systems.World Scientific PublishingCompany, 2014. : 9781783264193.

: https://books.google.ie/books?id=29O3CgAAQBAJ.

[69] Tibor Solymosi. “WeDeweyanCreatures”. In: Pragmatism Today 7.1 (2016),

pp. 41–59.

[70] George L Chadderdon. “Assessing machine volition: An ordinal scale for

rating artificial and natural systems”. In: Adaptive Behavior 16.4 (2008),

pp. 246–263.

[71] Leo Beukeboom and Nicolas Perrin. e Evolution of Sex Determination.

OUP Oxford, 2014. : 978-0191631405. : https://www.amazon.

com / Evolution - Sex - Determination - Leo - Beukeboom - ebook /

dp/B00LW6IAE4?SubscriptionId=0JYN1NVW651KCA56C102&tag=

techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=

B00LW6IAE4.

[72] Raffaele Calabrea et al. “Two is beer than one: A diploid genotype for

neural networks”. In: Neural Processing Leers 4.3 (1996), pp. 149–155.

[73] R. E. Smith and D. E. Goldberg. “Diploidy and Dominance in Artificial

Genetic Search”. In: Complex Systems 6.3 (1992). R. E. Smith and D. E.

Goldberg, ”Diploidy and Dominance in Artificial Genetic Search”, Com-

plex Systems, Vol. 6, pp. 251-285, 1992., pp. 251–285.

190

[74] Richard Lewontin. “e Genotype/Phenotype Distinction”. In: e Stan-

ford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2011.

2011.

[75] e Financial Times.Decoding Big Data. Penguin UK, 2013. : http://

books.google.ie/books?id=SOx16gJmrEQC&printsec=frontcover&

dq=Decoding+Big+Data+financial+times&hl=ga&sa=X&ei=A-

XDU9e-LuLA7AaH5IDYAg&redir_esc=y#v=onepage&q=Decoding%

20Big%20Data%20financial%20times&f=false.

[76] Viktor Mayer-Schönberger and Kenneth Cukier. Big data a revolution

that will transform how we live, work, and think. 2013. : http://

oclc-marc.ebrary.com/Doc?id=10659211.

[77] Jiawei Han andMicheline Kamber.Datamining: Concepts and techniques.

Burlington, MA: Elsevier, 2011. : 978-0-12-381479-1. : http://

www.worldcat.org/search?qt=worldcat_org_all&q=9780123814791.

[78] I. H. Wien, Eibe Frank, and Mark A. Hall. Data mining: Practical ma-

chine learning tools and techniques. Burlington, MA: Morgan Kaufmann,

2011. : 978-0-12-374856-0. : http : / / www . worldcat . org /

search?qt=worldcat_org_all&q=9780123748560.

[79] Florin Gorunescu. Data mining concepts, models and techniques. 2011.

: http://site.ebrary.com/id/10454853.

[80] Sang C. Suh. Practical applications of data mining. Sudbury, Mass.: Jones

& Bartle Learning, 2012. : 978-0-7637-8587-1. : http://www.

worldcat.org/search?qt=worldcat_org_all&q=9780763785871.

191

[81] Oded Z. Maimon and Lior Rokach. Data mining and knowledge discov-

ery handbook. New York: Springer, 2010. : 978-0-387-09822-7. :

http://www.worldcat.org/search?qt=worldcat_org_all&q=

9780387098227.

[82] Tim Menzies. “Beyond Data Mining”. In: IEEE Soware 30.3 (2013), p. 92.

: 0740-7459. : http://doi.ieeecomputersociety.org/10.

1109/MS.2013.49.

[83] Michael Goebel and Le Gruenwald. “A survey of data mining and knowl-

edge discovery soware tools”. In: ACM SIGKDD Explorations Newsleer

1.1 (1999), pp. 20–33. : http://www.lcb.uu.se/users/janko/

data/goebel_sigkddexp99.pdf.

[84] Rui Xu and II Wunsch, D. “Survey of clustering algorithms”. In: Neural

Networks, IEEE Transactions on 16.3 (May 2005), pp. 645–678. : 1045-

9227. : 10.1109/TNN.2005.845141. : http://ieeexplore.

ieee.org/xpl/articleDetails.jsp?arnumber=1427769.

[85] Usama M Fayyad. Advances in Knowledge Discovery and Data Mining

(American Association for Artificial Intelligence). MIT Press, 1996. :

978-0-262-56097-9. : http://www.amazon.co.uk/dp/0262560976.

[86] Eric Bonabeau, Marco Dorigo, and Guy eraulaz. Swarm intelligence:

From natural to artificial systems. Santa Fe Institute Studies in the Sci-

ences of Complexity. Oxford: Oxford University Press, 1999. : 978-0-

19-513159-8. : http://books.google.ie/books?id=PvTDhzqMr7cC.

192

[87] Ajith Abraham, Crina Grosan, and Vitorino Ramos. Swarm intelligence in

data mining. Berlin; New York: Springer, 2006. : 978-3-540-34956-3.

: http://site.ebrary.com/id/10157825.

[88] Marco Dorigo et al. Positive Feedback as a Search Strategy. Tech. rep.

Technical Report No. 91-016, Politecnico di Milano, Italy, 1991.

[89] DavidMartens, Bart Baesens, and TomFawce. “Editorial survey: Swarm

intelligence for datamining”. In:Machine Learning 82.1 (2011). 10.1007/s10994-

010-5216-5, pp. 1–42. : 0885-6125. : http://dx.doi.org/10.

1007/s10994-010-5216-5.

[90] Luis Felipe Giraldo, Fernando Lozano, and Nicanor ijano. “Foraging

theory for dimensionality reduction of clustered data”. In:Machine Learn-

ing 82.1 (Jan. 2011), pp. 71–90. : 0885-6125. : 10.1007/s10994-

009-5156-0. : http://dx.doi.org/10.1007/s10994-009-

5156-0.

[91] Richard K. Belew. “Artificial Life: A Constructive Lower Bound for Ar-

tificial Intelligence”. In: IEEE Intelligent Systems 6 (1991), pp. 8–15. :

0885-9000. : http://doi.ieeecomputersociety.org/10.1109/

64.73812.

[92] Teuvo Kohonen. Self-organizing maps. 3rd. Springer series in informa-

tion sciences, 30. Berlin: Springer, Dec. 28, 2001. : 978-3-540-67921-9.

: http://www.worldcat.org/isbn/3540679219.

[93] T. Villmann et al. “Topology preservation in self-organizing featuremaps:

exact definition and measurement”. In: Neural Networks, IEEE Transac-

tions on 8.2 (Mar. 1997), pp. 256–266. : 1045-9227. : 10.1109/72.

193

557663. : http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=557663.

[94] Alfred Ultsch and H. Peter Siemon. “Kohonen’s Self Organizing Feature

Maps for Exploratory Data Analysis”. In: Proceedings of the International

Neural Network Conference (INNC-90), Paris, France, July 9-13, 1990 1.

Dordrecht, Netherlands. Ed. by Bernard Widrow and Bernard Angeniol.

Vol. 1. Dordrecht, Netherlands: Kluwer Academic Press, 1990, pp. 305–

308. : http://www.uni-marburg.de/fb12/datenbionik/pdf/

pubs/1990/UltschSiemon90.

[95] Robert Saunders and John S Gero. “Artificial creativity: A synthetic ap-

proach to the study of creative behaviour”. In: Computational and Cog-

nitive Models of Creative Design V, Key Centre of Design Computing and

Cognition, University of Sydney, Sydney (2001), pp. 113–139.

[96] João M Martins and Eduardo R Miranda. “A connectionist architecture

for the evolution of rhythms”. In: Applications of Evolutionary Comput-

ing. Springer, 2006, pp. 696–706.

[97] omas Riga, Angelo Cangelosi, and Alberto Greco. “Symbol ground-

ing transfer with hybrid self-organizing/supervised neural networks”.

In: Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Con-

ference on. Vol. 4. IEEE. 2004, pp. 2865–2869.

[98] Rob Saunders et al. “Curious whispers: an embodied artificial creative

system”. In: International conference on computational creativity. 2010,

pp. 7–9.

194

[99] Helge Rier. “Self-organizing maps on non-euclidean spaces”. In: Koho-

nen maps 73 (1999), pp. 97–110.

[100] Damminda Alahakoon, Saman K. Halgamuge, and Bala Srinivasan. “Dy-

namic self-organizing maps with controlled growth for knowledge dis-

covery”. In:Neural Networks, IEEE Transactions on 11.3 (May 2000), pp. 601–

614. : 1045-9227. : 10.1109/72.846732. : http://ieeexplore.

ieee.org/xpl/articleDetails.jsp?arnumber=846732.

[101] Pasi Koikkalainen and Erkki Oja. “Self-organizing hierarchical feature

maps”. In: Neural Networks, 1990., 1990 IJCNN International Joint Confer-

ence on. Vol. 2. June 1990, pp. 279–284. : 10.1109/IJCNN.1990.

137727.

[102] Teuvo Kohonen. “e adaptive-subspace SOM (ASSOM) and its use for

the implementation of invariant feature detection”. In: Proc. ICANN. Vol. 95.

1995, pp. 3–10.

[103] Luana Bezerra Batista, HermanMartins Gomes, and Raul FernandesHerb-

ster. “Application of growing hierarchical self-organizing map in hand-

wrien digit recognition”. In: Proceedings of 16th Brazilian Symposium

on Computer Graphics and Image Processing (SIBGRAPI). 2003, pp. 1539–

1545.

[104] Hubert Cecoi and A.bdel Belaïd. “Rejection strategy for convolutional

neural network by adaptive topology applied to handwrien digits recog-

nition”. In: Document Analysis and Recognition, 2005. Proceedings. Eighth

International Conference on. Vol. 2. Aug. 2005, pp. 765–769. : 10 .

195

1109/ICDAR.2005.200. : http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=1575648.

[105] EhsanMohebi andAdil Bagirov. “A convolutional recursivemodified Self

OrganizingMap for handwrien digits recognition”. In:Neural Networks

60 (2014), pp. 104–118. : 0893-6080. : 10.1016/j.neunet.2014.

08.001. : http://www.sciencedirect.com/science/article/

pii/S0893608014001968.

[106] Jörg Ontrup and Helge Rier. “A hierarchically growing hyperbolic self-

organizing map for rapid structuring of large data sets”. In: Proceedings

of the 5th Workshop on Self-Organizing Maps, Paris (France). 2005.

[107] Jussi Pakkanen. “e Evolving Tree, a new kind of self-organizing neural

network”. In: proceedings of theWorkshop on Self-OrganizingMaps. Vol. 3.

Citeseer. 2003, pp. 311–316.

[108] Andreas Rauber, DieterMerkl, andMichael Dienbach. “e growing hi-

erarchical self-organizingmap: exploratory analysis of high-dimensional

data”. In:Neural Networks, IEEE Transactions on 13.6 (Nov. 2002), pp. 1331–

1341. : 1045-9227. : 10.1109/TNN.2002.804221.

[109] Hamed Shah-Hosseini. “Binary tree time adaptive self-organizing map”.

In: Neurocomputing 74.11 (2011). Adaptive Incremental Learning in Neu-

ral NetworksLearning Algorithm and Mathematic Modelling Selected

papers from the International Conference on Neural Information Pro-

cessing 2009 (ICONIP 2009)ICONIP 2009, pp. 1823–1839. : 0925-2312.

: 10.1016/j.neucom.2010.07.037. : http://www.sciencedirect.

com/science/article/pii/S0925231211000786.

196

[110] Huicheng Zheng et al. “Learning nonlinear manifolds based on mix-

tures of localized linear manifolds under a self-organizing framework”.

In: Neurocomputing 72.13–15 (2009). Hybrid Learning Machines (HAIS

2007) / Recent Developments inNatural Computation (ICNC 2007), pp. 3318–

3330. : 0925-2312. : 10.1016/j.neucom.2009.01.008. :

http://www.sciencedirect.com/science/article/pii/S0925231209000605.

[111] Gerald M. Edelman. Neural Darwinism : the theory of neuronal group se-

lection. Basic Books, 1987. : 978-0-465-04934-9. : http://www.

worldcat.org/isbn/9780465049349.

[112] Yann LeCun and Corinna Cortes. “MNIST handwrien digit database”.

In: (2010). : http://yann.lecun.com/exdb/mnist/.

[113] Rosemary T. Salaja, Ronan Flynn, andMichael Russell. “Automatic speech

recognition using artificial life”. In: 25th IET Irish Signals & Systems Con-

ference 2014 and 2014 China-Ireland International Conference on Informa-

tion and Communities Technologies (ISSC 2014/CIICT 2014). Institution of

Engineering and Technology (IET), 2014. : 10.1049/cp.2014.0665.

: http://dx.doi.org/10.1049/cp.2014.0665.

[114] Rosemary T. Salaja, Ronan Flynn, and Michael Russell. “Evaluation of

wains as a classifier for automatic speech recognition”. In: Signals and

Systems Conference (ISSC), 2015 26th Irish. June 2015, pp. 1–6. : 10.

1109/ISSC.2015.7163770. : http://ieeexplore.ieee.org/

xpl/articleDetails.jsp?arnumber=7163770.

[115] Li Deng and Xiao Li. “Machine Learning Paradigms for Speech Recog-

nition: An Overview”. In: Audio, Speech, and Language Processing, IEEE

197

Transactions on 21.5 (May 2013), pp. 1060–1089. : 1558-7916. :

10.1109/TASL.2013.2244083. : http://ieeexplore.ieee.

org/xpl/articleDetails.jsp?arnumber=6423821.

[116] K. F. Lee. Automatic Speech Recognition: e Development of the SPHINX

System. e Springer International Series in Engineering and Computer

Science. Springer US, 2012. : 978-1-4615-3650-5. : https : / /

books.google.ie/books?id=KVwFCAAAQBAJ.

[117] Douglas O’Shaughnessy. “Invited paper: Automatic speech recognition:

History, methods and challenges”. In: Paern Recognition 41.10 (2008),

pp. 2965–2979. : 0031-3203. : 10.1016/j.patcog.2008.05.008.

: http://www.sciencedirect.com/science/article/pii/

S0031320308001799.

[118] Steven B Davis and Paul Mermelstein. “Comparison of parametric rep-

resentations for monosyllabic word recognition in continuously spoken

sentences”. In: Acoustics, Speech and Signal Processing, IEEE Transactions

on 28.4 (1980), pp. 357–366.

[119] Lawrence R Rabiner. “A tutorial on hidden Markov models and selected

applications in speech recognition”. In: Proceedings of the IEEE 77.2 (1989),

pp. 257–286.

[120] Steve Young et al.eHTK Book. HTK Version 3.4. Cambridge University

Engineering Department, 2006.

[121] Simon Peyton-Jones.Haskell 98 language and libraries : the revised report.

Cambridge: Cambridge University Press, 2003. : 978-0-521-82614-3.

: http://www.worldcat.org/isbn/9780521826143.

198

[122] Haskell. 2016. : https://www.haskell.org/ (visited on 09/22/2016).

[123] Jon Bentley. “Programming Pearls: Lile Languages”. In: Commun. ACM

29.8 (Aug. 1986), pp. 711–721. : 0001-0782. : 10.1145/6424.

315691. : http://doi.acm.org/10.1145/6424.315691.

[124] MarjanMernik, JanHeering, andAnthonyM. Sloane. “When andHow to

DevelopDomain-Specific Languages”. In:ACMComput. Surv. 37.4 (2005),

pp. 316–344. : http://dblp.uni-trier.de/db/journals/csur/

csur37.html#MernikHS05.

[125] Martin Fowler.Domain-specific languages. Upper Saddle River, N.J.: Addison-

Wesley, 2011. : 978-0-13-210754-9.

[126] Paul Hudak. “Building domain-specific embedded languages”. In: ACM

Computing Surveys (CSUR) 28.4es (1996), p. 196.

[127] Paul Hudak. “Domain-specific languages”. In: Handbook of Programming

Languages 3 (1997), pp. 39–60.

[128] Paul Hudak. “Modular domain specific languages and tools”. In: Soware

Reuse, 1998. Proceedings. Fih International Conference on. IEEE. 1998,

pp. 134–142.

[129] Philip Wadler. “Monads for functional programming”. English. In: Ad-

vanced Functional Programming. Vol. 925. Lecture Notes in Computer

Science. Springer, 1995, pp. 24–52. : 978-3-540-59451-2. : 10 .

1007/3-540-59451-5_2. : http://homepages.inf.ed.ac.

uk/wadler/papers/marktoberdorf/baastad.pdf.

199

[130] Ralf Lämmel and Simon Peyton Jones. “Scrap Your Boilerplate: A Practi-

cal Design Paern for Generic Programming”. In: Proceedings of the 2003

ACM SIGPLAN International Workshop on Types in Languages Design and

Implementation. Ed. by Zhong Shao and Peter Lee. TLDI ’03. New Or-

leans, Louisiana, USA: ACM, 2003, pp. 26–37. : 1-58113-649-8. :

10.1145/604174.604179. : http://doi.acm.org/10.1145/

604174.604179.

[131] Ralf Lämmel and Simon Peyton Jones. “Scrap More Boilerplate: Reflec-

tion, Zips, and Generalised Casts”. In: Proceedings of the Ninth ACM SIG-

PLAN International Conference on Functional Programming. ICFP ’04. Snow

Bird, UT, USA: ACM, 2004, pp. 244–255. : 1-58113-905-5. : 10.

1145/1016850.1016883. : http://doi.acm.org/10.1145/

1016850.1016883.

[132] Ralf Lämmel and Simon Peyton Jones. “Scrap Your Boilerplatewith Class:

Extensible Generic Functions”. In: Proceedings of the Tenth ACM SIG-

PLAN International Conference on Functional Programming. ICFP ’05. Tallinn,

Estonia: ACM, 2005, pp. 204–215. : 1-59593-064-7. : 10.1145/

1086365.1086391. : http://doi.acm.org/10.1145/1086365.

1086391.

[133] José PedroMagalhães et al. “AGeneric DerivingMechanism for Haskell”.

In: Proceedings of the ird ACM Haskell Symposium on Haskell. Haskell

’10. Baltimore, Maryland, USA: ACM, 2010, pp. 37–48. : 978-1-4503-

0252-4. : 10.1145/1863523.1863529. : http://doi.acm.org/

10.1145/1863523.1863529.

200

[134] Mark Liberman et al. TI 46-Word LDC93S9. Philadelphia, 1991. : https:

//catalog.ldc.upenn.edu/docs/LDC93S9/ti46.readme.html.

[135] Paulo Cortez et al. “Internet traffic data (in bits) from a private ISP with

centres in 11 European cities. e data corresponds to a transatlantic

link and was collected from 06:57 hours on 7 June to 11:17 hours on 31

July 2005. Data collected at five minute intervals.” In: (2014). : https:

//datamarket.com/data/set/232n/internet-traffic-data-in-

bits-from-a-private-isp-with-centres-in-11-european-

cities- the- data- corresponds- to- a- transatlantic- link-

and-was-collected-from-0657-hours-on-7-june-to-1117-

hours-on-31-july-2005-data-collected-at-five-minute-

intervals#!ds=232n&display=line.

[136] Paulo Cortez et al. “Internet traffic forecasting using neural networks”.

In: e 2006 IEEE International Joint Conference on Neural Network Pro-

ceedings. IEEE. 2006, pp. 2635–2642. : http://www3.dsi.uminho.

pt/pcortez/0715.pdf.

[137] Github user “zonination”.weather-intl:Weather for 24 International Cities.

2016. : https://github.com/zonination/weather-intl.

[138] MelanieMitchell.An introduction to genetic algorithms. 2. repr. NewDelhi:

Prentice Hall of India, 2002. : 978-81-203-1358-3.

[139] Amy de Buitléir et al. “A Functional Approach to Sex: Reproduction

in the Créatúr Framework”. English. In: Trends in Functional Program-

ming: 15th International Symposium, TFP 2014, Soesterberg, e Nether-

lands, May 26-28, 2014. Revised Selected Papers. Ed. by Jurriaan Hage and

201

Jay McCarthy. Vol. 8843. Lecture Notes in Computer Science. Springer

International Publishing, 2015, pp. 68–83. : 978-3-319-14674-4. :

10.1007/978-3-319-14675-1_5.

[140] Wiki contributors. GHC.Generics. Wiki page. 2013. : http://www.

haskell.org/haskellwiki/GHC.Generics.

[141] F. Gray. Pulse code communication. US Patent 2,632,058. 1953. : http:

//www.google.com/patents/US2632058.

[142] C. Gyles and P. Boerlin. “Horizontally Transferred Genetic Elements and

eir Role in Pathogenesis of Bacterial Disease”. In: Veterinary Pathology

51.2 (2014). PMID: 24318976, pp. 328–340. : 10.1177/0300985813511131.

eprint: http://dx.doi.org/10.1177/0300985813511131. :

http://dx.doi.org/10.1177/0300985813511131.

[143] Amy de Buitléir. Créatúr GitHub. GitHub repository. 2014. : https:

//github.com/mhwombat/creatur.

[144] Amy de Buitléir. Créatúr Tutorial. 2014. : https://github.com/

mhwombat/creatur-examples/raw/master/Tutorial.pdf.

[145] Drew McDermo. “Artificial intelligence meets natural stupidity”. In:

ACM SIGART Bulletin 57 (1976), pp. 4–9.

[146] DW Van der Merwe and Andries Petrus Engelbrecht. “Data clustering

using particle swarm optimization”. In: Evolutionary Computation, 2003.

CEC’03. e 2003 Congress on. Vol. 1. IEEE. 2003, pp. 215–220.

202

[147] Jason Brownlee. Clever algorithms : nature-inspired programming recipes.

[Place of publication not identified]: Lulu, 2011. : 978-1-4467-8506-5.

: http://www.worldcat.org/search?qt=worldcat_org_all&

q=9781446785065.

[148] Andrey Palyanov. Sibernetic: Simulation of C. elegans crawling. In a com-

ment, Palyanov says ”About 10 seconds of simulated physical time took

a few days of parallel OpenCL-based calculations on a Radeon R290X

GPU (see sibernetic.org for algorithm details)”. 2016. : https : / /

www.youtube.com/watch?v=J_wG5PfDIoU.

[149] HenryMarkram. “e blue brain project”. In:Nature ReviewsNeuroscience

7.2 (2006), pp. 153–160.

[150] Brandon Rohrer. “An implemented architecture for feature creation and

general reinforcement learning”. In: Workshop on Self-Programming in

AGI Systems, Fourth International Conference on Artificial General Intelli-

gence. 2011.

[151] Akshay Vashist and Shoshana Loeb. “Aention Focusing Model for Nex-

ting Based on Learning and Reasoning.” In: BICA. 2010, pp. 170–174.

[152] Stuart C Shapiro et al. “Metacognition in sneps”. In: AI Magazine 28.1

(2007), p. 17.

[153] Moshe Looks, Ben Goertzel, and Cassio Pennachin. “Novamente: An in-

tegrative architecture for general intelligence”. In: AAAI fall symposium,

achieving human-level intelligence. 2004.

203

[154] Dennis Decoste and Bernhard Schölkopf. “Training invariant support

vector machines”. In: Machine learning 46.1-3 (2002), pp. 161–190.

[155] Dan Claudiu Cireşan et al. “Deep, Big, Simple Neural Nets for Hand-

wrien Digit Recognition”. In: Neural Computation 22.12 (Dec. 2010),

pp. 3207–3220. : 10.1162/neco_a_00052. : http://dx.doi.

org/10.1162/NECO_a_00052.

[156] Ronan Flynn. Models and test scripts (email). Dec. 2015.

[157] Philippe Le Cerf and Dirk Van Compernolle. “A new variable frame anal-

ysis method for speech recognition”. In: Signal Processing Leers, IEEE

1.12 (1994), pp. 185–187.

[158] Avril Coghlan. A Lile Book of R For Time Series. July 2016. : https:

//media.readthedocs.org/pdf/a-little-book-of-r-for-time-

series/latest/a-little-book-of-r-for-time-series.pdf.

[159] Bernhard Pfaff andMahieu Stigler. Package ‘vars’. Feb. 2015. : https:

//cran.r-project.org/web/packages/vars/vars.pdf.

204

Appendices

205

Appendix A

An introduction to Haskell

Note: e information in this appendix has been taken verbatim from my MSc

thesis [1].

Some basic features of the Haskell programming language are demonstrated

below using simple examples.

e factorial of a positive integer n is the product of all integers from 1 to n.

A Haskell definition of the factorial function is shown below.

fact 0 = 1

fact n = n * fact (n-1)

e syntax for function invocation is function-name param1 param2 . . .

Parentheses are not normally required.

fact 7

Usually it is not necessary to specify a type signature for a function; in most

cases the compiler can determine an appropriate type signature. However, pro-

viding a type signature can make the programmer’s intention clearer.

206

fact :: Int -> Int

fact 0 = 1

fact n = n * fact (n-1)

e symbol :: is read ”has type” and introduces a type specification. e

notation Int -> Int indicates that the function fact takes one Int (integer)

parameter, and returns an Int.

Consider the type signature for the following function, which takes two Int

parameters and returns a Bool (Boolean).

f :: Int -> Int -> Bool

e reader may be surprised by the presence of two -> operators, but this

notation hints at something very important and fundamental to functional pro-

gramming: the concept of currying, or partial function application. e -> op-

erator is right-associative. Parentheses can be added as shown below without

changing the meaning; this will help to illustrate how currying works.

f :: Int -> (Int -> Bool)

Wrien this way, another way to view f emerges. Instead of viewing it as a

function that takes two parameters, it can be thought of as a function takes one

Int, and returns a second function that takes an Int and returns a Bool. One

way to take advantage of this is to define a new function that partially applies f.

g :: Int -> Bool

g = f 3

207

us g is a function which, when given a parameter x, returns a function

which invokes f with 3 as the first parameter, and x as the second parameter.

For example, suppose f is defined as follows:

f :: Int -> (Int -> Bool)

f x y = x > y

en g 4 = f 3 4 = 3 > 4 = false.

208

Appendix B

A heuristic approa to configuring

experiments with wains

A typicalwain experiment (such as the one in Chapter 9) uses approximately 25

configuration parameters which are important to the success of the experiment.

ese parameters can interact in subtleways. For example, suppose a population

is not learning the task. ismight be because the rewards are too low, providing

lile incentive for the agents to learn. If the reward is then increased and the

agents start to learn, they will probably need more brain power in the form of

more classifier and predictor models. If the metabolism cost is based on the

number of models created, the cost may then be too high, and the agents may

die before they can raise offspring.

Because of these potential interactions, a parameter cannot be optimised in

isolation. Yet it is impractical to test a wide variety of configurations (combina-

tions of parameter seings) because each experiment may take hours or days to

run. For example if only five values were tested for each parameter, there would

209

be 525 or approximately 3×1017 configurations to test! erefore, one strategy

is to guess some suitable parameter values (guided by earlier, similar experi-

ments, when available), run an experiment until a problem is discovered, and

then tweak the values as needed to correct the problem. e strategy outlined

below was found to be useful during the research described in this thesis.

1. Choose metabolism-related parameters such that the average metabolic

cost is approximately 0.1 per agent per turn. emetabolism cost will typ-

ically depend on the resources required by the agent’s brain (e.g., number

of classifier models) which won’t be completely known until some agents

master the task.

2. Choose reward-related parameters such that the maximum possible re-

ward balances the average metabolic cost. Together with step 1, this en-

sures that if the population has mastered the task, agents that make more

than an occasional mistake will be eliminated.

3. If there is a cost for flirting, choose it to approximately balance the birth

and death rates.

4. An initial population size of 100 to 500 will typically provide sufficient

diversity in the gene pool. Larger populations may yield beer results,

but will run more slowly. Short trial runs with a population size of 25 to

50 may be used initially to identify problems in the configuration.

5. Choose a maximum lifetime which is long enough to allow an agent to

rear two or three children. (How long this takes will not be completely

known until a few generations master the task.)

210

6. If possible, find acceptable (not necessarily optimal) values for classifier

parameters by experimenting with a standalone SGM. en define the

ranges for the classifier genes to include those values, with a margin on

either side to allow evolution to optimise them.

7. Set the ranges for genetic parameters wider than you think is necessary.

A range that is too narrow may exclude the optimal value for that gene,

in which case it will only appear in the population as a result of mutation.

A range that is too wide will typically be corrected by evolution as genes

that lead to unfit agents disappear from the population.

8. Since the configuration parameters can interact with each other, change

only one parameter at a time.

9. If the agents do not live long enough to reproduce, check that the rewards

and metabolism costs are balanced as described in steps 1 and 2.

10. If the agents stop mating, or do not mate frequently enough, try lowering

the cost of flirting.

11. If agents frequently die before the first child is reared, the cost of raising

a child may be too high. Try decreasing the lower limit of the devotion

gene range.

12. If one generation has partial success at the task, but their children show no

improvement, the agents may not be rearing their children long enough.

Try raising the upper limit of the maturity gene range.

211

