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Abstract. We present the Self-Generating Model (SGM), a new ver-
sion of the Self-organizing Map (SOM) that has been adapted for use in
intelligent data mining ALife agents. The SGM sacrifices the topology-
preserving ability of the SOM, but is equally accurate, and faster, at
identifying handwritten numerals. It achieves a higher accuracy faster
than the SOM. Furthermore, it increases model stability and reduces
the problem of “wasted” models. We feel that the SGM could be a use-
ful alternative to the SOM when topology preservation is not required.
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1 Introduction

Data mining is the extraction of insights from data. In contrast with an ordinary
database search or query, where the key features and relationships are known;
in data mining, they have to be discovered [1, p. 5].

Data mining includes a wide range of tasks. Landscape mining explores the
data to find the space of possible inferences (the data’s “landscape”) and to
identify interesting patterns before leaping in with more traditional data analy-
sis tools [2]. Classification assigns objects to predefined categories based on the
attributes of the objects [3]. Clustering (also known as unsupervised classifica-
tion or exploratory data analysis) partitions items into a set of clusters such
that items within a cluster have similar characteristics, and items in different
clusters have different characteristics [3, 4]. Prediction (also known as forecast-
ing) estimates future (or unknown) data based on present data and past trends,
validating hypotheses [3] [5, p. 4]. Regression identifies functions which map
data objects to prediction variables [3] [5, p. 4]. Modelling produces a (typi-
cally simpler) representation of the data that captures important features and
relationships. Such models can be used for classification, prediction, and to pro-
vide insight about the data. Visualisation makes insights understandable by
humans[3].

The self-organizing map (SOM) provides a way to represent high-dimensional
data in fewer dimensions (typically two), while preserving the topology of the
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input data [6]. The SOM is a set of models associated with nodes in a regular
grid. Patterns that are similar to each other in the high-dimensional space are
mapped to models that are near each other on the grid. (There are exceptions
to this topology-preserving property, however; see Villmann et al. [7]).

In addition to topology preservation, SOMs have benefits that make them
useful for artificial life (ALife) and intelligent agents. They are easy to under-
stand and implement. The SOM models can be inspected directly, which makes
it easier to debug problems with the implementation or the learning function.
After a SOM has been trained, labels can be assigned to the nodes to allow it to
be used for classification. It can also be used to cluster data; a U-matrix (whose
elements are the Euclidean distance between neighbouring cells) will have high
values at the cluster edges [8].

SOMs have an established place in the data mining tool set, especially for
clustering and classification. They have also been used, often with modifications,
in ALife [9, 10]. and artificial intelligence [11, 12]. De Buitléir et al. [13] described
an ALife species designed for data mining, called wains. Wains live in, and subsist
on, data; data mining is their survival problem. Their brains use modified SOMs
to model their environment and to identify patterns in the data. Wains were
originally used with images of handwritten numerals [13], but they have also
been applied to the task of speech recognition, identifying audio samples of
spoken numerals [14, 15].

In this paper we present the Self-Generating Model (SGM), a new version
of the SOM that is modified for use by intelligent agents. However, the modi-
fications may be useful in other applications as well. We will describe the tra-
ditional SOM and historical modifications to it (Section 2), discuss the goals of
our modifications (Section 3), describe the SGM algorithm (Section 4), discuss
the experimental set-up (Section 5), compare the behaviour of the SOM and the
SGM (Section 6) and present our conclusions (Section 7).

2 The SOM algorithm

SOM training (see Algorithm 1) is unsupervised. The elements (patterns) of
the input data are typically numeric vectors, but they can be any data type so
long as we can define a measurement of similarity between two patterns, and a
method to make one pattern more similar to another, by an arbitrary amount.
The SOM models are arranged on a (typically two-dimensional) grid of fixed
size. The models must be initialised.

Step 3 ensures that as additional input patterns are received, nodes that
are physically close respond to similar patterns in the input data. Thus, the
resulting grid preserves the topology of the original high-dimensional data. SOMs
“translate data similarities into spatial relationships” (emphasis in the original)
[16].

The traditional SOM has been adapted and extended in many ways. Com-
mon modifications include use of grids in non-euclidean spaces [16], dynamically
increasing the size of the grid [17], replacing the grid with a hierarchical arrange-
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Algorithm 1 SOM algorithm.

For each input pattern,

1. Compare the input pattern to all models in the SOM. The node with the model
that is most similar to the input pattern is called the winning node.

2. The winning node’s model is adjusted to make it slightly more similar to the input
pattern. The amount of adjustment is determined by the learning rate, which
typically decays over time.

3. The models of all nodes within a given radius of the winning node are also adjusted
to make them slightly more similar to the input pattern, by an amount which is
smaller the further the node is from the winning node.

ment of nodes [18], and combining with principal component analysis [19]. There
is extensive literature on SOMs with two or more of these modifications [20–27].

3 Adapting the SOM for intelligent data mining ALife
agents

The requirements for a classifier used in intelligent data mining ALife agents are
rather different than for more common applications. For example, in recognising
handwritten or spoken numerals, it is not necessary to preserve the topology of
the input data set. (We may not be interested in knowing whether a particular ‘3’
is more similar to an ‘8’ or a ‘6’.) In an early implementation of wains, De Buitléir
et al. [13] made a small modification to the SOM to improve performance. By
updating only the winning node, the topology-preserving ability of the SOM was
sacrificed in favour of speed [13].

If we dispense with topology preservation, what is the cost? Consider that in
addition to a SOM-like classifier, the brain of an intelligent data mining ALife
agent might include a mechanism that uses the information provided by the
classifier to determine what response to take. This is the approach used by de
Buitléir et al[13]. For convenience, we’ll call this mechanism the decider. Suppose
that the classifier assigns the label a to the current scenario, and the decider does
not know a good response to a. If the classifier preserves the topology of the input
data, the decider can look for the nearest neighbour of a for which it does know a
good response, and choose that (see Figure 1). If a good response to a neighbour
of a is likely to be a good response to a, this tactic could benefit the agent’s
survival.

However, there may be other ways to achieve the same result. The classifier
could report the similarity of the scenario to all models, including the model
labelled a. (This information is calculated anyway as part of the SOM algorithm.)
Without needing to know anything about the topology used by the classifier, the
decider can look for known responses to models that are similar, and choose a
response that is known to be good for a similar model (see Figure 2). Thus, we
can sacrifice topology preservation in favour of other goals.
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Fig. 1. Decision-making using a classifier that preserves topology.
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Fig. 2. Decision-making using a classifier that uses disconnected models and does not
preserve topology.

One advantage of the SOM for intelligent agents is that the models can
be extracted from the classifier, making it easier to understand how an agent
perceives the object, and evaluate any decisions the agent makes in response.
This is a feature we wanted to keep. In a traditional neural net, it can be difficult
or even impossible to analyse why the net makes certain classifications.

Many SOM modifications are motivated by a desire for greater accuracy in
classifying; however, this may not be necessary for some agent implementations.
In a multi-agent system one can ask the same question of multiple agents, each
with a different set of lifetime experiences, to get independent opinions. By
averaging the responses, a “wisdom of the crowd” effect could produce greater
accuracy than a single agent could achieve. Thus, increasing accuracy was not
one of our goals.

However, we did have a goal of early accuracy. Agents cannot wait until
they have a full, final set of models (they continue to learn throughout their
lives) to begin learning rules for survival. Agents need to be able to “hit the
ground running”. An agent should have a useful, if small, set of models early in
life; this will allow it to experiment with possible responses to objects in their
environment, and to learn from the results.

Another goal in adapting the SOM was to have stable models. Agents make
decisions based on the patterns that they encounter, and the mental categories
(node labels) associated with the patterns. Agents experiment by trying different
actions in response to each cluster of patterns. Through trial and error, each
agent develops rules that select the appropriate action to take in response to
each pattern cluster. If models change to such a degree that they no longer
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match patterns that they used to match, agents may need to “unlearn” existing
rules and replace them with new ones.

As will be shown, SOM models can be very unstable. This can make it
more difficult for agents to learn appropriate responses for their environment.
For example, suppose the environment has both edible and poisonous berries;
and an agent can distinguish by some characteristic such as colour. We would
expect an agent to develop at least one model that matches edible berries but
not poisonous ones. The agent has a better chance of surviving if it learns to eat
objects that match this model. Now imagine that the model changes so much
that it now matches the poisonous berries. The eating response that the agent
has learned is now dangerous. In order to survive, the agent must “unlearn” the
eating response and learn a more appropriate action. The situation is even worse
if the model changes from matching poisonous berries to edible ones. The agent
may have ruled out eating anything that matches this model, and may never try
eating the edible berries.

Once those goals are met, there are additional features that would be desir-
able in a modified SOM. We want a faster algorithm; this can be achieved if
we minimise what we call “wasted” models. Models that will can not be
used to classify future patterns are wasted; the computational effort to create
and update those models is unnecessary. This is especially important because
instead of working with a single SOM, we may require a population of agents
with SOMs in their brains, thus amplifying any inefficiencies in the algorithm.

Finally, we hope to use the modified SOM in a variety of data mining appli-
cations. Therefore, we wanted a generic algorithm, not one that was tailored
to a specific type of data such as images or audio samples.

Why not modify the SOM, when other classifier algorithms are available that
are also capable of unsupervised learning? It is often impractical for an agent to
keep a copy of every data input it has encountered during its life; fortunately
SOMs only require that we keep the models. Contrast this with an algorithm
such as k-means which requires that we re-calculate the centroid at each step,
accessing all of the data seen previously [4]. Particle Swarm Optimisation (PSO)
similarly iterates over all the data, making it unsuitable for this application [28].

Learning Classifier Systems (LCSs) [29, Section 3.9] learn the best action
to take in response to a set of conditions. As such, the LCS might be suitable
as a replacement for both the classification and decision-making components in
a wain (as we will discuss in Section 7). However, it seems overkill to replace
just the classifier with an LCS. Finally, as mentioned earlier, SOM models can
be inspected directly. A trained neural network stores what it has learned as
weights[4]; making it difficult to extract the models.

4 Self-Generating Model

To satisfy the above goals, we adapted the basic SOM algorithm to produce the
SGM algorithm (see Algorithm 2). The SGM can be initially empty, or it can be
initialised with a set of (possibly random) models. Step 2, adjusting the winning
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node, has been modified to allow the classifier to grow as needed and produce
models that are useful as soon as they are created. In addition, Step 3 of the
SOM algorithm, adjusting models in the neighbourhood of the winning node, has
been eliminated in an attempt to improve performance, and to minimise wasted
models. The difference threshold helps to ensure that models do not change too
much during the lifetime of the SGM, providing model stability Like the SOM,
the SGM design is generic; it has not been tailored to a specific kind of data.

Algorithm 2 SGM algorithm.

For each input pattern,

1. Compare the input pattern to all models in the SGM. The node with the model
that is most similar to the input pattern is called the winning node.

2. If the difference between the input pattern and the winning node’s model is greater
than the difference threshold, and the SGM is not at capacity (number of models <
maximum), a new model is created that is identical to the input pattern. Otherwise,
the winning node’s model is adjusted to make it slightly more similar to the input
pattern. The amount of adjustment is determined by the learning rate, which
typically decays over time.

5 Experimental set-up

The experiments described in this paper used the MNIST database, which is a
collection of images of hand-written numerals from Census Bureau employees
and high-school students [30]. The training set contains 60,000 images, while the
test set contains 10,000 images. All images are 28x28 pixels, and are grey-scale
as a result of anti-aliasing. The centre of pixel mass of the numeral has been
placed in the centre of the image. Sample images are shown in Figure 3. We
used the database images without modification.

Fig. 3. Sample images from the MNIST database [30].

For all experiments, the SOM used the learning function given by Equation 1,

f(d, t) = re−
d2

2w2 , (1)

where

r = r0

(
rf
r0

)a

, w = w0

(
wf

w0

)a

, and a =
t

tf
.
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The parameter r0 is the initial learning rate, rf is the learning rate at time
tf , w0 is the radius of the initial neighbourhood, and wf is the radius of the
neighbourhood at time tf . For the winning node, d = 0, and Equation 1 reduces
to Equation 2,

f(t) = r = r0

(
rf
r0

)a

. (2)

We used Equation 2 as the learning function for the SGM in all experiments.
Thus, at all times the learning rate of the SGM matches the learning rate of the
winning node in the SOM. This permits a fairer comparison of the SOM and the
SGM.

We use the Mean of Absolute Differences (MAD) as a measure of difference
between two images. The absolute difference between each pair of corresponding
pixels in the two images is calculated and the mean taken, to obtain a number
between 0 (identical) and 1 (maximally dissimilar). As all the images in the
MNIST database have the same size, viewing direction (normal to the plane of
the image, from above), and comparable intensity, the MAD is an appropriate
difference metric.

The models for each SOM were initialised with images containing random
low pixel values similar to the background of the MNIST images. Each SGM
was initially empty, having no nodes or models.

Once a classifier has been trained, the nodes must be labelled with the nu-
meral represented by the associated model before the classifier can be used for
testing. To do this, we counted the number of times each node was the winning
node for each numeral during the training phase. The node was then labelled
with the numeral it most often matched.

5.1 Experiment 1: Early accuracy

Recall that agents cannot wait until they have a full, final set of models to begin
learning appropriate responses. This experiment determines how long it takes to
develop a useful, if small, set of models. For this experiment, we used a SOM
and SGM of similar size. After 25 training images, chosen at random, had been
presented to a classifier, we tested its accuracy with the entire test set, presented
in random order. We repeated the process with various amounts of training, from
50 up to 500 images.

Table 1 shows the configuration of the classifiers for this experiment. The
values r0 and rf were chosen so that the learning rate would start at maximum
and be near zero by the end of training. The values w0 and wf were chosen
through experimentation. The value of tf is the number of training images.

Recall that if the difference between an input pattern and the winning node’s
model is greater than the difference threshold, and the SGM is not at capacity, a
new model is created. Once capacity is reached, the SGM will always update the
most similar model, which increases the chance of a model eventually represent-
ing a different numeral than it was created for. We wanted to compare the SGM
with a small (10x10) SOM. However, an SGM may not create the maximum
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Table 1. Configuration of SOM and SGM in Experiment 1

variable SOM SGM

node count 100 96
grid type rectangular unconnected nodes

r0 1 1
rf 1×10−4 1×10−4

w0 2 not applicable
wf 1×10−4 not applicable
tf 60000 60000

difference threshold not applicable 0.165

number of models. In order to maximise model stability, we used an SGM with
a maximum capacity of 2000 models, and relied on the difference threshold to
indirectly control the number of models created.

To find a reasonable value for this difference threshold, we selected a random
set of 500 images and measured the MAD between all pairs of images. The results
are shown in Table 2. Experimenting with the values near the two means, we
discovered that a threshold of 0.165 resulted in the SGM creating 96 models,
which was useful for comparison with the 100 models in the SOM.

Table 2. Analysis of MAD between MNIST images, based on a sample of 500 images.
The first column contains the mean of the mean absolute difference; the second, the
standard deviation of the mean.

mean std. dev.

same numeral 0.135 0.0436
different numerals 0.171 0.0374

5.2 Experiment 2: Full training run

To compare the overall accuracy of the SOM and SGM, we created a randomised
list of all 60,000 images in the MNIST training set. The training images were
then presented, in this order, to a small and large SOM, and a small and large
SGM. Next, we created a randomised list of all 10,000 images in the test set,
and presented those to the SOM and the SGM for classification. This allowed us
to compare the accuracy, speed, model stability and number of wasted models
for the two classifiers.

Table 3 shows the configuration of the classifiers for this experiment. In
preliminary trials, we found that the accuracy of both the SOM and the SGM
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depends strongly on the number of models, weakly on r0, and very weakly on the
other configuration parameters. Therefore, for this experiment we chose to vary
the classifier size, while keeping r0 and rf constant. The values r0 and rf were
chosen so that the learning rate would start at maximum and be near zero by
the end of training. The values w0 and wf were chosen through experimentation.
The value of tf is the number of training images.

Table 3. Configuration of SOM and SGM in Experiment 2

variable SOM SGM

grid size 4×4, 6×6, 8×8, 10×10, 15×15, initially empty,
20×20, 25×25, 30×30, 35×35, grows as needed

40×40, 45×45, 70×70
grid type rectangular unconnected nodes

r0 0.1 0.1
rf 1×10−4 1×10−4

w0 2 not applicable
wf 1×10−4 not applicable
tf 60000 60000

difference threshold not applicable 0.09, 0.1, 0.105, 0.11, 0.115,
0.12, 0.13, 0.14, 0.15, 0.16,
0.17, 0.18, 0.19, 0.2, 0.21

6 Results and interpretation

6.1 Experiment 1: Early accuracy

Figure 4 compares the accuracy of the SOM and SGM during the early part of
training. The SGM reaches a usable level of accuracy faster than the SOM.

6.2 Experiment 2: Full training run

Figures 5 and 6 show one pair of small classifier models after all of the training
images have been presented to the small classifiers. From Figure 5 we can see
that many of the models are blurry combinations of more than one numeral.
The topology of the input data has been partially preserved; models of the same
numeral tend to be near each other.

There are four shaded models in Figure 5. They were not winning nodes
at any point during testing, were not used to classify testing images and are
counted as “wasted”. An unmatched model could be assigned the same label as
was assigned to a majority of its neighbours. However, this would result in the
left pair of unmatched models (shaded) being assigned labels for the numeral ‘1’,
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Fig. 4. Early accuracy comparison

even though they are clearly better matches for ‘0’. The right pair of unmatched
models are very ambiguous; it may be better not to use them.

Figure 6 shows the small SGM after training. We can see that the topology
has not been preserved. Unfortunately, there are still many ambiguous models,
perhaps due to the small size of the classifier.

Figure 7 compares model stability for the SOM and SGM. To measure this,
we noted the first numeral matched by the model. (In the case of an SGM, this
is the numeral the model was created in response to.) We compared this to the
numeral used to label the model’s node (at the end of training). If the numerals
were the same, we counted the model as stable. The SGM consistently achieved
higher model stability.

Figure 8 compares model usage. A model is counted as “used” if it was the
winning node at any point during testing, otherwise it is considered “wasted”.
The SGM consistently used more of its models, reducing the problem of wasted
models.

Figure 9 shows the time required for training and testing the SOM and SGM.
For all but the smallest classifiers, the SGM is considerably faster than the SOM.
We believe the reduction in processing time occurs primarily because the SGM
only updates one model during training, while the SOM updates the models in
the neighbourhood of the winning node. In addition, the SGM has fewer models
during the early part of training, and therefore does not need to make as many
comparisons as the SOM does.

Figure 10 compares the accuracy of the classifiers. The accuracy is the number
of times that an image was correctly identified, divided by the total number of
images. The accuracy of the two methods appears to be comparable. For all but
the smallest SOMs, a small fraction of the nodes were not winning nodes at any
point during training. We could have labelled these nodes to match the majority
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Fig. 5. Small SOM after all 60,000
training images have been presented.
Models are arranged in a grid. Wasted
models are shaded.

Fig. 6. Small SGM after all 60,000
training images have been presented.
Models are unconnected; they are
shown here in the order they were cre-
ated. There were no wasted models.
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of their neighbours. However, there were not enough to significantly impact the
accuracy, so we counted them as correct answers.
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The code and results for this experiment are open access [31, 32]

7 Conclusions

The overall accuracy of the two classifiers is comparable, but the SGM achieves
a higher accuracy faster. This could allow an agent to make good survival deci-
sions with less training. In the SGM, model stability was higher. Furthermore,
the SGM significantly reduces wasted models, making it faster than the SOM.
We feel that the SGM could be a useful component for implementing intelli-
gent agents. Furthermore, it may be useful for other clustering or classification
applications.

Areas for future research include comparing the accuracy of the SOM and
SGM on other types of data (e.g., audio), and designing a brain based on the
SGM that would allow an agent to learn to survive in an environment through
experimentation. The new brain design could be compared to both the existing
design for the wain, and to an LCS.
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